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FORWARD

The accuracy of a ballistic projectile is

dependent upon the precision with which a gun can be

pointed and upon the dynamics of the barrel and projectile

during launch. Advances in target acquisition- and in

stabilization and control technology yield great potential

for finding a target and then aiming a gun with high

accuracy. Less attention has been given to the dynamics

of the gun and projectile and how it effects accuracy.

Those factors of gun and projectile dynamics that contribute

to errors are:

(a) The effect of the droop and related dynamic

behavior of a bent gun tube projectile interaction.

(b) Balloting, or tube projectile interaction for

projectiles with rapid spin.

(c) Effects of barreL vibration and vibration of

the supporting structure or vehicle, which is trans-

mitted to the gun barrel.

(d) Response produced by weapon mechanism motion.

The purpose of the conference was to:

(a) Present the work of specialists who are addressing

problems of gun precision, and to

(b) Afford an opportunity for discussion and coordination

of methods and approaches to evaluating precision.

The conference was held in the Sheraton Hotel,

Rock Island, Illinois, January 26-27, 1977. Twenty-two papers

were presented, with authors distributed among:

(a) Five Defense Laboratories,

(b) Three industrial concerns,

(c) Five universities.

(i)
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It is,further, interesting to note that four of the papers

were co-authored by individuals from various permutations

of these organizations. Finally, the distribution of

participants included:

(a) Fifteen U.S. defense laboratories,

(b) One U.K. defense laboratory,

-(c) Three military field organizations,

(d) Nine industrial concerns,

(e) Eight universities.

Based on the intensity of discussion and interaction among

the diverse groups of participants, we fee] that the goal

of dissemination of information was met.

AI
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I. INTRODUCTION

Tank guns must have a high probability of hitting the target with

the first round of an engagement in order to survive. Vibrations of the

gun tube while the projectile is in the bore have long been recognized

as an important source of error. The forces which occur as the projectile

emerges from the muzzle, but is still in contact with the tube, are very

large but of short duration. These forces produce impulsive changes in

the vector velocity of the projectile and are about as important as

tube vibrations as a source of error. Errors due to transient aerodynamic

forces while the projectile is in the transitional ballistic regime are

relatively minor and will not be considered in this report. In the error

budget for tank guns, only a small proportion is allotted to tube motion

and other mechanical causes; the major allotments in the error budget are

assigned to fire control and target acquisition. The emphasis on reducing

the gun contribution to the error budget has been the major driving force

for res.?arch in gun tube vibrations.

Gun tubes for rapid fire guns must absorb large amounts of heat.

In meeting this requirement, the gun tubes are overdesigned structurally

and are relatively stiffer than tubes for tank guns. The gun tube

vibration problem is much less severe. However, these rapid fire guns
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are generally mounted on vehicles or aircraft with considerable structural

flexibility. The various modes of vibration are readily excited by

successive rounds. Consequently the gun, mount, and supporting structure

must be considered as a single system in the analysis of vibratory motion.

On the other hand, the structural elements supporting the trunnions in a

tank are very stiff, so the motion of the trunnions is negligible while

the projectile is in the bore.

In conventional artillery, errors associated with indirect fire,

variable drag, and the meteorological message tend to dominate the error

budget. These errors may be considerable, especially at extended ranges,

so firing for registration is practiced whenever the tactical situation

permits. The errors due to gun motion, transverse muzzle forces, and

transitional aerodynamic forces are lumped together as jump. A jump

correction is determined during firing trials and posted in the firing

tables. Experience has shown the jump correction for artillery is reasonably

constant during the life of the gun.

In this report we will consider mainly tank guns in the 90mm-12Omm

range. First we will summarize the known causes of tube vibration and the

mechanical aspects of variable bias. Second, we will review work prior to

1957 in a cursory manner and, third, the work performed during the following

decade at the USA Ballistic Research Laboratory and elsewhere. Finally,

we will review the current state-of-the-art, delineate pacing problems as

wte see them, and indicate direction and technical level of future investiga-

tions.

II. CAUSES AND CONSEQUENCES OF TUBE VIBRATION

Several types of vibratory and rigid body motion occur during the

firing cycle of a conventional tank gun. During recoil the gun rotates

3



slightly about the trunnions, due patly to clearances and partly to

elasticity of the elevating mechanism. The trunnions are subject to

large recoil forces and, consequently, the supporting structure deforms

slightly, permitting the trunnions to move perceptibly. Vibratory motion

falls into three general categories: large amplitude, low frequency

vibrations which have a major effect on accuracy; high frequency, small

amplitude vibrations which may affect the structural integrity of fuzes

and other components; and traveling stress waves arising from impact loads.

The major contribution to large amplitude vibrations is due to unbalanced

recoiling parts. If the center of gravity does not lie on the axis

of the bore, a large turning moment is produced by the acceleration of the

gun tube. The component of unbalance which lies in the vertical plane will

cause the gun to rotate slightly in the trunnions and also cause low frequency

tube vibration of significant amplitude. In theory, the combined rigid

body and vibratory motion should contribute a consistent bias to the point

of impact for a given round. In practice, bias in tank guns is more variable

than in artillery. In addition, a worn concentric recoil mechanism will

produce excessive dispersion in tank guns.

Rifling torque produces rather large torsional vibrations, especially

near the muzzle. The tube acts like a torsion bar, twisting mainly in one

direction while the projectile is in the bore, and then oscillating severely

after the projectile emerges. The effects on ,iccuracy are minor in a

straight tube. However, if the tube is bent or droops naturally, the

torsional vibrations become coupled with other types of motion resulting

in increased dispersiou. If points along the outside of the tube are used

to measure displacement of the boreline during firing, then the experimental

4



results should be corrected for twist of the tube. The most obvious

method is to make measurements on opposite sides of the tube so that

the effect of torsion can be averaged out.

The powder pressure and recoil forces produce axial vibrations

which can be detected with strain gages. The effects on accuracy are

negligible; however, stress waves must be considered under some circumstances.

L. H. Thomas proved that axial stress waves reflected by the muzzle were

one cause of failure in the 90mm tank gun. The tubes failed near the

junction of the tube and breech ring.

Unbalanced projectiles produce large centrifugal forces which cause

vibrations of moderate frequency. These vibrations are small during

the early part of the interior ballistic cycle, but reach considerable

amplitude near the muzzle. High explosive shells are the major cause

of these vibrations as shells are generally not balanced during production.

Kinetic energy rounds are machined to close tolerances and measurements

of typical samples have shown the unbalance to be negligible. Thus we

should not anticipate significant tube vibrations from centrifugal loading

when kinetic energy rounds are fired.

Radial vibrations have been observed by Cranz in his pioneering studies.

As these vibrations are symmetric, there should be no affect on accuracy.

Two effects related to the droop of the tube have been studied.

Finston, at Brown University, considered the reaction of the projectile

against a slightly drooped tube. Inertia of both the tube and projectile

1 Personal communication, B. I. Hart, formerly Mathematician at the USA

Ballistic Research Laboratories. L. 11. Thomas performed the work fCa

the Ordnance Corp around 1947-1950.
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were considered. Simkins, at Watervliet Arsenal, has considered the

Bourdon effect, in which gas pressure tends to straighten the tube.

Both problems require advanced nonlinear analysis.

Balloting in the bore causes high frequency vibrations in the pro-

jectile. These vibrations may be severe enough to damage the fuze or

other sensitive components. Stress waves of small amplitude will be

propagated in the tube. It seems probable that the energy transmitted

to the tube by impact is too small to set up standing waves. Tube motion

produced by these impacts should have little effect on accuracy.

Artillery with bag type charges is subject to problems arising from

gravity effects and improper seating of the projectile. If the projectile

is slightly cocked during ramming, eccentric engraving of the rotating

band will result, leading to static unbalance. Gravity alone may be

sufficient to tilt a projectile loaded by hand. The resulting loss of

symmetry in loading conditions is a cause of yawing in the bore, which

is considered to be a major cause of preferential wear that has been

observed from time to time. Wear at the muzzle may be important in large

caliber, high velocity guns, and will cause a loss of accuracy. It is

believed the cause is mainly mechanical, due to high sliding velocities and
2

large centrifugal forces at the muzzle.

This catalog of interrelated phenomena shows why progress has been

slow and sporadic. A truly scientific experiment in which the various

causes of tube vibration and their effects are isolated and studied

2
Lloyd E. Line, Jr., "Erosion of Guns at the Muzzle," OSRD Report No.

6322, August 1945. Also filed as NDRC Report A-357.
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one at a time is far too costly in practice. Low frequency vibrations

affecting accuracy have received the most attentionand are reasonably

well understood at the present time. The analysis of these vibrations

follows the usual strength of materials formulations. The greatest present

uncertainty lies in formulating effective boundary conditions at the inter-

face of the gun tube and recoil mechanism. High frequency vibrations due

to an unbalanced projectile and balloting are more random in nature, and

correlation between theory and experiment is unsatisfactory.

III. REVIEW OF WORK COMPLETED BEFORE 1957

Only a cursory review will be given here in view of an earlier report
3

by the author. The major objectives were to determine average jump for

firing tables and to delineate causes of dispersion. The recorded

progress is remarkable considering two important experimental variables

were neglected and the engineering calculations indicated by the theory

pressed the available means of computation to the limit. It is now

recognized that solar radiation produces curvature in the tube which

affects the point of impact. Sissom and others recognized its importance

but the results of most experimental work did not include the necessary

corrections. The second source of errors is associated with laying the

gun. Generally a correction for the difference between the alignment of

the gunner's quadrant and boresight line was included. However, careful

experimental work must be based on the inclination and transverse velocity

of the muzzle at shot ejection. These quantities are not correlated exactly

A. S. Elder, "A Review of the Literature to the Bias in the Point of

Impact Associated with the Lateral Motion of a Gun During Firing,"

BRL Memo Report No. 1157, July 1958. AD No. 302698.
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with the boresight axis obtained under static conditions due to the

various types of gun tube vibration previously described. Finally,

computational difficulties led to oversimplified mathematical models

which did not correspond sufficiently to the system under consideration.

C. Cranz identified radial vibrations, longitudinal vibrations,

torsional vibrations, and transverse vibrations in experimental studies

with a rifle barrel. These are the most important types of vibration

for guns of any caliber. All other possible modes of vibration should

be highly localized and have little effect on accuracy on structural

-integrity.

F. L. Ufflemann carried out a series of instrumented firing tests

with the 17 pdr and 75mm guns. The experiments showed unexplained

high frequency components in addition to the displacement due to

bending. lie also showed that apparent changes in jump of the 75mm gun

mounted on the Sherman tank were due to errors in laying.

E. Harrison and others showed a significant correlation between

vertical jump and curvature of the barrel in the vertical plane. This

should be expected in view of Finston's work on tube droop mentioned

previously.

B. D. Sissom showed that jump associated with a given gun changed

over an extended period of time and was larger than differences in jump

produced by a change of ammunition. lie supervised significant work on

thermal bending and was among the first to emphasize correct muzzle

conditions in experimental studies.

8



J. A. Mahoney obtained a strong correlation between the static

unbalance in a T-154 cartridge and the point of impact.

E. H. Lee performed the most important theoretical work of this

period in connection with the instrumented firing tests conducted by

Ufflemann. He analyzed the low frequency vibrations due to static un-

balance of the recoiling parts. The flexible barrel and rigid tipping

parts were considered separately; the conditions at the interface were.

then matched by successive approximations. The results did not agree

completely with the results of the instrumented firing tests.

J. C. P. Miller considered the 17 pdr as a single elastic system

and obtained normal modes in accord with this concept. The matching

procedure used by Lee was avoided. Essentially, Miller's analysis is

equivalent to a solution in terms of normal coordinates of Lagrange.

He calculated the normal modes by an iterative procedure.

J. L. Lubkin showed specifically that the transverse linear velocity

of the muzzle, as well as the direction of the bore axis at the muzzle

must be considered in both theoretical and experimental studies. Fie

was among the first to consider wave propagation methods as well as normal

mode analysis in studying torsional vibrations due to the rifling torque.

4
The work of Darpas was cited in the preceding reference, but was

not given the attention it deserves. Darpas considered the gyroscopic

motion of an unbalanced projectile in the tube and the yawing motion

which results. The effects of yaw on the trajectory and point of impact

J. G. Darpas, "Transverse Forces on a Projectile Wich Rotates in the

Barrel," Memorial de l'artillerie francaise, 31, 19 (No. 1, 1957).

English translation by H. P. Hitchcock, BRL Memo Report No. 1204,

March 1959. AD No. 217015.
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were also considered. He showed that the centrifugal force near the

muzzle produced very large transverse forces, accounting for abnormal

wear in certain. 152mm gun tubes. He did not consider the transverse

vibrations which would be caused by these forces. This work emphasized

the importance of unbalanced projectiles as a major source of yawing motion

in bore and gave the forcing function required for an analysis of

vibrations due to the centrifugal force.

Both Lee and Darpas considered the limitations of the Bernoulli-Euler

equation for transverse vibrations. Lee showed that shearing strains were

important early in the interior ballistic cycle and, consequently, the

Timoshenko equation was to be preferred. Darpas noted that the Bernoulli-

Euler equation could not predict traveling bending waves as it was dispersive

in nature. Standing waves, of'course, are readily obtained by separation

of variables.

The work of L. H. Thomas on longitudinal waves should be mentioned

again in passing. The work reviewed in this section formed the basis

of an extensive program by Gay, Elder and Sissom in the late Fifties.

IV. SUMMARY OF TUBE VIBRATION AND ACCURACY STUDIES

AT THE BALLISTICRESEARCH LABORATORY

A major study of tank gun accuracy was carried out by Gay, Elder and

Sissom during the late Fifties.5 The investigation was divided into

four parts, as shown below:

11. P. Gay and A. S. Elder, "The Lateral Motion of a Tank Gun and Its

Effect on the Accuracy of Fire," BRL Report No, 1070, March 1959,

AD No. 217657.
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"(1) A theoretical study by BRL. The purpose of

this study was to devise methods of calculating

motion of the weapon, thus establishing the impor-

tance of the various factors contributing to its

motion. The 90mm Tank Gun, T-139, was used to

illustrate the effects in a typical weapon. To

conserve time and funds, only motion in the

vertical plane was to be considered.

(2) Development of apparatus by BRL. Since the

motion of the T-139 Gun is very small prior to shot

ejection, new techniques and methods were required to

measure it.

"(3) Development of apparatus by D&PS. This por-

tion of the program includes the development of very

accurate sights for laying the weapon and instrumenta-

tion for measuring the curvature of the center line of

the tube. Measurements of weightc, centers of gravity,

and moments of inertia required for the calculations

are also included in this portion.

"(4) Firing Program by D&PS. The purpose of these

tests was to measure the motion of the weapon and

the point of impact of the projectile, thus providing

data for comparing theory and experiment and also

-)roviding a basis for evaluating the importance of

various factors."

1i
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The conclusions of this study still appear reasonably valid and are

given below:

"A series of theoretical and experimental investi-

gations were conducted to determine the effects of

droop and gun vibration on the accuracy of ta~k

guns. Tests of the 90m Gun, T-139, indicate

that, in general, only a part of the observed

difference between the point of aim and the point

of impact on Ithe target can be ascribed to motion

of the weapon at the instant of shot ejection.

Measurements of the yawing motion of the projectile

4Ln free flight indicate that the remainder cannot be

defi?4itely attributed only to aerodynamic jump. It

is evident from records of bending strain in the tube

&at theoretical analysis of the lateral motion of the

tubeoassociated with a projectile whose center of

gravity does not coincie with the axis of the

tube indicates that this condition may produce large

lateral forces. Since these lateral forces affect the

motion of the projectile during its emerjence to

determine the source of a few mils difference between

the point of aim and the point of impact, it is

necessary to measure accurately the yawing motion

of the projectile in the bore, during launching,

and during the blast regime."

12



In retrospect, the achievements and shortcomings of this program can

be considered with greater detachment than during the period the program

was in progress. The experiments were conducted at night, so bending of

the tube due to solar heating was avoided completely. Mr. Sisson per-

sonally layed the gun with ,great care before-each round, using a muzzle

sight. Thus, major sources of error which had affected other programs

were eliminated altogether. Considerable aerodynamic data was also

obtained as these rounds were fired at the Transonic Range.

The experiments and analysis were conducted within the framework

given by Ufflemann, Lee and Sneddon. Vibrations due to the unbalanced

recoiling mass, unbalanced projectile, and rifling torque were taken into

account. The Benoulli-Euler equation was used for bending.

Numerical techniques were based on Myklestad's method of calculating

normal modes. This method is now standard and is imbedded in such general

purpose codes as NASTRAN. Langer's asymptotic method6 was used to estimate

the higher frequencies, thus greatly reducing the number of iterations

required to obtain a given frequency and the corresponding model shapes.

Both Lee's and Miller's method of analyzing the motion due to unbalanced

recoiling parts were used. In addition to different methods of analysis,

different mathematical modeling of the tube was used in the two approaches.

In Lee's method, the rear portion of the tube was considered to be rigid,

while in Miller's method the entire length of the tube was considered to

be elastic, and the stiffness was calculated by the usual methods. The

6 A. S. Elder, "Nnerical and Asymptotic Methods of Integrating the Bernu li-

EuZer Equation," BRL Technical Note No. 1422, August 1961. AD No. 266692.
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model used in Miller's method indicated that the elasticity of the rear

portion of the tube should be taken into account, as the deformation curves

differed significantly. However, the slope of the muzzle, which affects

accuracy, did not differ very much in the two sets of calculations.

Reasonable agreement was obtained between calculations and the observed

motion, but the correlation fell short of expectations.

On the other hand, predictions of motion for the unbalanced projectile

were not confirmed experimentally. Later work, described below, showed

that yawing motion in the bore was more erratic than predicted and not

in accord with the model used by Lee and Sneddon.

In addition, marked local bending was observed in the vicinity of

the projectile. We examined many photographic plates under the comparator

before we were convinced that our observations were valid. These deflec-

tions are not predicted by the Bernoulli-Euler theory, which was the basis

of our structural analysis, but have been analyzed in the two-dimensional

7
theory of elastic beams. The local bending of a hollow cylinder is now

being studied in detail, using Fourier analysis and the three-dimensional

equations of elasticity.

Calculations for bending vibrations of a 175mm gun tube were also

carried out in an attempt to find the cause of abnormal dispersion.
8

S. Timoshenko and J. N. Geodier, Theory of Elasticity. McGraw Hill

Book Company, 1951, pages 102-107.

A. S. Elder, "The Lateral Motion of a 175mm Gun Tube Produced by an

Eccentric Projectile," BRL Memo Report No 1318, July 1962. AD No. 286860.
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Calculations showed that tube vibrations produced by an eccentric pro-

jectile could not account for the observed dispersion. During the course

of the calculations for the lateral velocity and displacement ,of the tube,

it was found that the interior ballistic calculations of travel, velocity

and acceleration of the projectile as functions of time Were internally

inconsistent. Finally, a new timebase was obtained from the velocity and

travel curves by integration, and the original time scale discarded as

redundant. The tube vibration calculations then proceeded without further

difficulty.

H. P. Gay was finally able to obtain a correlation between the orienta-

9
tion of the center of gravity of a proof slug and the point of impact. The

unbalance was sufficient to override other effects. The equations of

motion of an unstable pendulum were used to calculate deviations of the

trajectory and vector velocity of the projectile at the muzzle. As the 37mm

gun tube used in these experiments was quite stiff, it seems probable that

vibrations of the muzzle did not play a significant role in determining

the point of impact.

10
In another test, a mirror was attached to the nose of a projectile

and the angular motion recorded photographically. The angular motion

showed a zig-zag pattern, indicating severe balloting, and did not conform

to the smooth spiraling motion we anticipated in calculating the motion

of the tube due to an unbalanced projectile.

9 H. P. Gay, "On the Motion of a Projectile as it Leaves the Muzzle,"

BRL Technical Note No. 1425, August 1981. AD No. 301974.

10"TeYwn
R. D. Kirkendall, "The Yawing Motion of Projectiles in the Bore,"

BRL Technical Note No. 1729, September 1970, AD No. 878327L.
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In view of the preceding tests, it was evident that research-on muzzle

vibrations and in-bore projectile motion should be carried out concurrently.

Current work at the Ballistic Research Laboratory is being organized in

this manner.

V. CURRENT THEORETICAL AND EXPERIMENTAL PROGRAMS

During the last several years Dr. T. Simkins and his associates have

been carrying out a fundamental program at Watervliet Arsenal with special

emphasis on secondary effects. The NASTRAN Code was used 4s the main

computation toul in calculating transient motion of the M113 gun tube.
11

Tube droop and gas pressure were the primary causes of excitation consiSlered.

The axial tension resulting from the rearward acceleration of the tube was

also considered. (This effect is considerable at higher zones in the

vicinity-of the breech and must be considered in the reduction of strain

gage records.) The local stresses caused by the rotating band were not

calculated. The vibrational response for the traveling pressure was cal-

culated for several stations and compared with experimental data obtained

at the Ballistic Research Laboratory.

The Bourdon effect was the only secondary source of excitation con-

sidered in this report. If a curved tube is pressurized internally, it

will tend to straighten; this effect is the basis of the Bourdon pressure

gage. The bending moment is proportional to the product of the curvature

and internal pressure assuming the external pressure is negligible.

11 T. Simkins, G. Pflegl, R. Scanlon, "Dynamic Response of the M113 Gun

Tube to Traveling Ballistic Pressure and Data Smoothing as Applied to

XM150 Acceleration Data," Report No. WVLT-TR-?5015, Watervliet A2senal,

Watervliet, NY, April 1975.
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The secondary effects of a moving mass have been considered more

12
recently. In all the work at the Ballistic Research Laboratory and

most of the work elsewhere, the mass of the projectile has been replaced

by a moving force which appears on the right hand side of the equations

of motion. This formulation is linear and is readily solved by modal

analysis. On the other hand, the correct formulation in terms of a moving

mass is nonlinear and must be solved by numerical methods, perhaps by

perturbation theory. The difference in the two solutions is significant

but not overwhelming and is less than the error incurred by neglecting

balloting motion.

Parasitic resonance caused by periodic heating and cooling in a

rapid-fire gun is one item of current 1rterest at Watervliet. The

governing equation has a periodic coefficient for the stiffness term and

thus is closely related to Hill's equation. Axial stress waves produced

by rapid radial expansion of the tube are also under consideration. The

axial waves are caused by the combined effects of longitudinal inertia

which restrains the tube and the Poisson effect which tends to contract

it locally in the axial direction. This tensile load must be added to the

tensile load produced by the rearward acceleration of the tube during

firing.

Research on gun tube vibration and accuracy have recently been resumed

at the Ballistic Research Laboratory after an interval of several years.

In-bore motion and muzzle conditions are being studied concurrently as

12 T. E. Simkins, "Structural Response to Moving Projectile Mass by the

Finite Element Method," Report No. WVLT-TR-75044, Watervliet Arsenal,

Watervliet, NY, July 1975.
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part of an overall program on the dynamics and interaction of the gun tube

and projectile. A rigid firing mount, especially designed for accuracy

studies, has been installed and is now being used for 105mmi instrumented

firing tests. At present, programs involving the N1392 and XM735 105mm kinetic

energy rounds are in the early stages and will be continued as circumstances

permit. The new instrumentation being developed for these programs is des-

cribed in other papers.

The parameters for this gun-mount system have recently been measured

for incorporation into computer programs being developed by the

Southwest Research Institute. In addition to standard normal mode

analysis, the equations of motion can be integrated numerically in space

and time. In this manner the variable length of the vibrating part of the

tube, due to recoil, has been taken into account, together with the non-

linear constraints the recoil mechanism imposes on the rotation of the gun

about its trunnions. The overturning moment produced by the powder pressure

couple has been measured directly with a weigh bar which replaced the

hydraulic strut normally used to elevate and depress the gun when mounted in a

tank.

The nonlinear coupling between torsional vibrations and tube droop,

mentioned previously, is also being analyzed at the Southwest Research

Instutute.

A research program concerned with gun tube vibrations and related

problems is continuing at the Ballistic Research Laboratory. As mentioned

previously, local bending produced by an unbalanced projectile is being

analyzed by Fourier methods using the exact equations of elasticity. This

vI
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work is an outgrowth of our program on symmetric stresses due to gas

pressure and rotating band pressure and uses similar techniques.

We wish to replace Myk!estad's method for a vibrating tube with a

more accurate program using exact solutions for the various segments. A

tube can be modeled as a few lumped constants, cylindrical sections, and

segments in which the outer surface is conical. Only four or five segments

should generally be required. The solution for the segment formed by a

conical surface has recently been derived and will be combined with the

known solutions for the cylindrical sections. The various segments will be

combined by matching the displacement, slope, moment, and shear at each

junction.

Our program will continue in collaboration with other agencies when-

ever topics of mutual interest arise.

VI. MODELING THEORY

The formulation of the field equations and boundary conditions should

be sufficiently realistic to yield results of sufficient accuracy and

yet not too complex or cumbersome for detailed analysis and computation.

Equations for large systems are generally put together from a number of

simple models; on the other hand, if only a single aspect or component

of the system is under consideration, a more detailed model is frequently

in order.

Finite element formulations and large codes such as NASTRAN are used

universally to analyze the gross response of a large system, provided the

system is elastic and the instantaneous response and wave analysis are not

required. Beams, rods, plates, ring elements, and a variety of other

19
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configurations are used as subelements. The stresses may be calculated

by finite elements or from a strength of materials formula.

The Bernoulli-Euler equation for vibrating beams is satisfactory for

periodic vibrations of moderate frequency and for transient vibrations,

but is not satisfactory for shock conditions or the propagation of flexural

waves. In addition to separable solutions, there is a source function

due to Fourier which is useful for short intervals of time just after

impact. The source function for the one-dimensional equation for the

conduction of heat in a solid is used as the basis for the following

analysis. This equation for heat conduction is

k ;
2v  av
2 at. (1)

The corresponding one-dimensional source function is

u = t-I 2 exp(-x 2/4kt). (2)

To derive the Bernoulli-Euler equation from (1), differentiate once with

respect to t: a .5v a2 v
k 2 2(3)

ax at at

Now differentiate (1) twice with respect to x:

a a4v a3 v
k =4 ax2at

aix ~xt(4)

13 Secondary Source: Rayleigh (Baron), Theory of Sound. Dover Publications,

New York, 1945. Vol 1, pp 302-304, contairs a digest of Fourier's

analysis.
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3
On eliminating 2 -- from the last two equations, we find

ax at
x2 2

k2 avav (5)

ax4  at2

The Bernoulli-Euler equation can be written in the form

a4 V 12a2
=v -a/ 2 2v (6)

ax 4  at2

Equations (5) and (6) are equivalent if

2 2

a = -I/k , a ± i/k.

Hence equation (6) has the source functions

S-1/2 sin(ax2/4t) (7)

u2 = t-1 / 2 cos(ax 2/4t). (8)

These equations indicate that an impulse applied at one point on a long

bar will cause an instantaneous response over the entire length of the

bar. Both experiments and the equations of motion in the theory of

elasticity show that an instantaneous response for distant points along

the bar is impossible. An initial disturbance causes a wave which travels

with constant, finite velocity.

The Timoshenko equation is the simplest equation which will predict

14
flexural waves. This equation, which is quite complicated, has the

general form
4 2 4 4

a ay B- + D a....0. (9)
ax 4 at 2 ax 2at 2 at4

14 S. Timoshenko, Vibration Probems in Engineering, 2d Edition, D. -Van

Nostrand Company, New York, 1927, pp 337-342.
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The constants A, B, C, and D depend on the moduli and section properties

of the bar.

Both the Bernoulli-Euler and Timoshenko equations give the axial,

stress and transverse deflection with reasonable accuracy, especially

for the lower modes of vibration. The remaining stresses are approximate,

as we are applying a single equation of motion to bars with geometrically

different cross sections.

Finally, we consider the Pochammer-Chree theory for an infinite circular

cylinder. The exact equations of motion from the linear theory of elasticity

are used to investigate longitudinal, torsional, and bending vibrations. One

can satisfy exactly the boundary conditions on the cylindrical surfaces, but

can only satisfy end conditions on a finite bar in an approximate manner.

The investigation of the "trapped end modes" required to satisfy end conditions

exactly requires advanced mathematical analysis which will not be considered

here.

We can use the Pochammer-Chree theory in technical problems if we

are content with the approximate description of end conditions, as indicated

15
by Love. A two-fold eigenvalue problem is involved, the first to deter-

mine wave length as a function of frequency in an infinite cylinder, the

second to combine four solutions of this type in such a way that the end

conditions are satisfied approximately. The following analysis is an

elaboration of very condensed remarks by Love and Herrmann.

A. E. II. Love, A Treatise on the Mathematical Theory of Elasticity,

Dover Publications, New York, 2944. See page 292.

22



Sinusoidal vibrations in an infinite hollow cylinder have been

16
studied in detail, both theoretically and numerically. In summary,

Herrmann, et al, assume displacements of the form

4
U = cos 0 cos (wt + az) E a.f.(r)

jrl j

4
U0 = cos 0 cos (wt + az) Z bjg.(r)

j=l

Uz  cos 0 sin (wt + az) E c.h.(r)

j=l J

Where the f, g, and h functions are specific combinations of Bessel functions

required to satisfy the equation of elasticity and are appropriate for bending;

the stresses are calculated from the displacements; then, the conditions

for stress free cylindrical surfaces are set forth. This frequency equation

amounts to an implicit functional relation between w and a which is tabulated

in scaled form.

We require four linearly independent solutions for the finite bar. A

second set is obtained by substituting sin (wt + az), and - cos (wt + az)

for the corresponding factors in the above equations. Solutions which

increase or decay experimentally along the length of the bar are found by

setting 9
V = cos 0 cos (wt + iaz) z a f.(r)
r j=5

V0  cos 0 cos (Wt + iBz) E bjgj(r)

j=5

9

V = cos 0 sin (Wt + iaz) E c.h (r)) Jj

z j=5

16
A. E. Armenakas, D. C. Gazis, A. Herrmann, Free Vibrations of Circular

Cylindrical Shells, Pergammon Press, New York, 1969.
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and calculating B as a function of w by solving the appropriate frequency

equation. Finally, a fourth set of solutions can be found by interchanging

sines and cosines as indicated above.

These four solutions can be combined to satisfy certain combinations

of boundary conditions at the ends. We finally should obtain a specific

set of circular frequencies wl 2 03 "'" with the corresponding values of

a and f. The analysis would give us very accurate theoretical results to

compare with experiments on circular portions of the gun tube which are not

too close to the ends.

The imposition of reasonably correct boundary conditions is frequently

more difficult than solution of the field equations and generally requires

more engineering judgment. In formulas relating to the stresses in

cylinders and bars, we assume that the loads are applied at the ends.

However, in practice, the loads are generally applied at the lateral

surfaces along the major dimension. The elementary formulas are still

valid a reasonable distance from the load by St. Venant's principle;

however, local disturbances to the nominal stress distribution occur in

the vicinity of the load. These disturbances are of secondary importance

in analyzing the gross structural behavior of an entire system, but are

important in interpreting strains in the vicinity of the load. External

tube strains due to gas and band pressure are an example of local strains

which have yielded considerable information concerning the stresses imposed

by the interior ballistic cycle.

On more philosophical grounds, one must be cautious about using

redundant information which will almost certainly be internally inconsistent.

This redundancy affected the interior ballistic calculations mentioned
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previously. Only the minimum data should be used and all possible-

variables obtained by calculations. In this way, the final calculations

should be internally consistent, although not necessarily more compatible

with observations.

VII. MECHANICAL ASPECTS OF VARIABLE BIAS

Nowhere is adequate modeling more important than in the analysis of

variable bias in tank guns. In preparation for this paper, the author

discussed accuracy problems at considerable length with Dr. Serge Zarodney.

Tank guns experience an occasion-to-occasion shift in the center of impact

which is unusual in artillery. The portion due to solar radiation and the

resulting bending of the tube is well understood and can be greatly reduced

by a thermal jacket. After thermal corrections have been made a small

residual bias remains which is due to a variety of mechanical causes.

Dr. Zarodney 17 believes that the recoil spring in a worn recoil mechanism

may rotate and thus affect the unsymmetrical component of the recoil force.

He has some statistical data to support his contention. In a recent

conversation, Mr. Ruff of MTD indicated that new or fully reconditioned

recoil mechanisms gave excellent accuracy, but dispersion increased noticeably

with worn mechanisms. Moreover, our difficulty in predictirg gross vibratory

motion of the tube appears in part due to uncertainties in modeling interface

conditions between the gun tube and recoil mechanism. This area requires

engineering analysis and experiment to determine the actual motion of a

worn recoil spring and the effective boundary conditions for our accuracy

and vibrations studies. Ye are no longer restricted to modal analysis, but

17 Dr. S. Zarodney, Official Suggestion, submitted to BRL.
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may now integrate the equations of motion step-by-step and account for

time dependent, nonlinear boundary conditions at each state of the calcu-

lation.

VIII. CONCLUSIONS

New instrumentation, improved computers, and more direct methods of

integrating the equations of motion should now enable us to perform

engineering and mathematical analysis with greater realism than was

possible a few years ago. Moreover, high first round hit probability

is still essential for tanks. The difficulties and uncertainties outlined

in this paper should point the way toward future investigations.
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1. Introcuctory Remarks.

In recent years, spectacular advances have been made in

weapon technology regarding location and identification of targets

and guidance of projectiles t-o the target. It is a fact that most

weapons used now and probably in the near future will be con-

ven ticnal, 'hat majority of the projectiles are not guided and

that conventional fire power remains the main factor in the

arsonal of any army. While great strides have been made in target

location and identification, very little progress has been made

eliminating a basic source of inaccuracy.

2. Accuracy.

A considerable literature exists regarding the dynamics

of conventional weapon systems. LeonardL da Vinci, Descartes,

and Cauchy all devoted considerable effort to the study of guns

and their dynamic behavior. More recently, Hardy, Littlewood,

Krylov, and Sneddon are names which easily come 6o mind when

internal ballistics and related dynamic phenomena are discussed.

(See (6) and 1 7]) Historical notes on some aspects of internal

ballistic phenomena are given in Cranz's classic textbook on

this subject (5]. The problems of weapon response and accuracy

criteria are complex and despite the existence of extensive

theoretical literature, in all known weapon design procedures,

the practical trial and error experimental techniques are still

being pursued.
28



Most of the existing literature on the dynamic behavior of

conventional weapon syst:ems consists of discussing "one

problem at a time". -,Some cause of inaccuracy or poor performance

is isolated, then a mathpmatical model is suggested, and solutions

of the corresponding differential equations of motion. are

discussed. Typical attempts at'isolating and discussing the

effects of "one problem at a. time" are the papers of D. Hardison

[1], A. S. Elder (2), D. E. Wente [3], and J. G. Darpas [4].

The main causes of conventional weapon inaccuracy can be

identified in the literature referring to test results as:

a) The uneven ammunition and internal ballistic variations.

b) The effects of the droop or of the static deflection.

c) Balloting of the *Pound and other projectile-barrel interactions.

d) Mechanical vibrations of the gun barrel caused either by

the recoiling mass or by the forces applied from the

supporting structure.

a) External causes due to motion .of the mount, or other

externa1 disturbances.

In the analysis carried out in the pas,t, "one cause av a

time was considered. For example. the effect of ballotinR

would be considered, while transverse vibration and "whip

effects" due to the droop are ignored. Or, the vibration of

the barrel would be analyned while balloting and droop effects

are ignored.

Such analysis is not- even helpful in understanding the

problem if the effects discussed are not independent of each

other. The effect of torsional vibrations on transverse

uiotiorr of the barrel can not be ignored if the center of

29



gravity of the transversely vibrating system does not coincide

with the center of torsion, and the two modes of vibration ar 114"

-then coupled. Similarly, the Borden tube effects and the

projectile tube interaction,affect the transverse vibration

and should not be studied as separate phenomena.

The main objection to such study waF, the theoretical

difficulty in setting up of the apposporate equations of

motion, and of realistic boundary conditions. This last

remark will be discussed in greater detail in part B of this

proposal.

The mathematical problem of defining the accuracy of

a gun can be approached from the practical point of view of

"what is it that we wish to minimize?" A closer look at the

problem reveals that the position, aqla and velocity of

the barrel at the time when the projectile leaves the barrel

are the most important parameters determining the accuracy of

the weapon. Let u(x,t) denote the displacement of the gun barrel

x£[o,k], t>o, where x denotes the position along the gun

barrel and t is time. If x-o is the muzzleb we wish to minimize

a aX1 1 a til X 0

t-T

Where T is the predicted time of projectile leaving the muzzle.

Since T can be predicted only with some probability p, we can

introduce a Gaussian distribution i(t) centered at t-T and suggest

a Sobolev norr

x-B T+- 
211 U; - f (tfa( 2(,t + ( ]) dxdt,
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where o<< is determined from data. Alternately, a weight function

7(x) can be introduced

X.2Z
fi (x)dx-I ~,and n Wx>O 0

xmo

attaining a maximum at x-o.

2 T+e 2 2
-~~~~~ fnx ()cu+u~ dt dxace, 0 T-e

-The problem of predicting and improving accuracy can be reduced

to the problem of finding a constrained minimum IIula c

2the SoboleV space A

This concept of accuracy is not necessarily the last word

in mathematical modelling of weapon systems and certainly the

bootstrap techniques described in part "B" can be appiied in

effort to find a,a or to even revise tha whole concept of what

is an accuracy, and how to represent it by a norm in a Hilbert

space or perhaps only in a normed space, or by an entirely

different mathematical formulation. Instead of assuming a

specific set of differential equations of motion and a time -

independent set of boundary conditions, the investigation should

rely on energy techniques, using some recent results ([i0],[1 ]).

3. Some Assumptions and Corresponding Variational Principles.

If one assumes the Euler-Lagrange (linear) beam theory and
Voigt-type dissipation, the Kinetic and Potential energy are

easily identified. To represent the equations of motion and the

adjoint oquations the following lilinorr prodwicl-s nre introbi'-d
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;u 3v3
T(uv)- ; I A(x) 3 1-)

0

(t) u2 2

V(u,v)- f (EI(x) x2 ,x2 ) dx (3.2)
oo

0D uv X 2) 2 .. 4 3
~*I~~c . 2 - 21).Ta t ax a t X

Additional energy terms involving effects of the projectile, for

' example

x-ao+zo au 3vf 1() W t8 dx, R-0 Oio, W= (3.4)

x- ao

describing the motion of the projectile, etc. can be added to

Kinetic potential or dissipation terms in formulation of the

Lagrangian functional

Sl,2 (u.v) - T(uv) - &V(uv) ,,D(U.v)) (3.5)

The variational principles described subsequently here can be

directly applied to derive the equations of motion. The details

of corresponding numerical technique will not be discussed in

detail here. Primary method will consist of a direct application

of the Galerkin approach. The results obtained can be checked

numerically against expected equations of motion. That is at

times when no projectile is present in the tube, the numerical

solution of the problem should approximate either Timoshenko's,

or perhaps the Euler-Lagrange equation of beam motion. Checks

should be performed against experimental data to confirm or to

deny the validity of the basic equations of motion.
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4, The "bootstrapping" technique

Before formulating a mathematical theory which models the

physical behavior of any weapon, it is advisable to have a careful

experimental check on reliability of the mathematical model.

To make a point let us consider a deceptively simple model of

vibration of a gun barrel.

Instinctively some people assume the Lagrange equations for

a vibrating beam to be a close approximation, and in the absence

of an intermediate support, the following system is regarded as a

mathematical model.

2 2 2

2 (EI(x) -- 
2 ) + pA a 2 w 2 q(x 0 ,t) (4.1)

w(k,t) = 0 a2 W (0,t) 0 (4.2a)
ax 2

1w (tt) =- 0 a 2 w (Olt)0-x ( (EI(x) -2 (4.2b)

Vt C[0,o

Of course it is hard to find a weapon which satisfies such equation

of motion, and almost impossible to find one satisfying the above

boundary conditions (catelevered - free).

A check on solutions and introduction of more complex equations

and boundary terms in subsequent computation is referred to as the

"bootstrap method".

An "intermediate" modelling of the weapon behaviour is discussed

in the next sections.

5. An example of a realistic modelling of transient boundary con-

ditions.
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The cantelever condition at the breach of a gun represented

by w(Zt) 0

w(.,t) 0
ax

is clearly unrealistic, and in case of each individual weapon

design a more complex boundary condition has to be established.

For example, an automatically firing weapon may have a

large clearance at the breach during the first round (.012", for

example, for the Rarden gun) so that the original motion of the

gun barrel is a "free-free" beam motion. Then, the breach

clearance is replaced by contact stress support at opposite ends,

as roughly shown by th.. sketch (exagerated).

The motion becomes roughly a vibration of a beam cantelevered

from a (nonlinearly) elastic wall. Now an intermediate support

pad may make contact providing an elastic support. Diagramatically,

we could regard this as a motion~ of a beam supported as follows.

34
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Due to simultaneous recoil motion, the length b0 as well as the

total length, are functions of time, making this a very complex

dynamic motion with complex rime-dependent boundary conditions.

(Observe that the torsional vibratikon and tha corresponding

boundary conditions have not been even mentioned in this mod.el,)

The clearances and the boundary conditions described here will

change w~ith the subsequent rounds because of the heating of the

barrel. The above exaaple was given only to illustrate the

degree of difficulty encountered in attempting to produce a

physically sensible version of a mathematica. model for an

automaticully fir:ad Coavoullional wO.poll.

We could assume the Voigt type dissipation arriving at the

equation:

a2  au a a2  au au
-2 (EI(x) ) + 32 [a-@ (E*I(x) a )] + A(x)p a2. 4 f (X,t) (5.la)
ax2  ax2  ax ax2  at2

with u satisfying the conditions

0 at x = ),(t) for al, t "0,
:I,.. .J, .J,, JJ

3 U 2aU a2U 0 at x = 0,

ax 3 ax2



The problem of simultaneous minimization of a given functioned

J(z( )) and compliance with the differential equations (5.1) can be

restated with the use of Lagrangian multipliers, provided we have

sufficient information concerning second derivatives of the

Hamiltonian function H(u,v) defined in section 6.

6. A Possible Approach to the Mathematical Modelling.

If the torsional effects are neglected, the equations of .otio-.

are closely related to the properties of following inner produc-t

defined on i - (0,Z(t)•

H (uv) - T(uv) + V(u,v) + D(u,v). (6.1)

Assuming that u, v are elements of the Sobolev space H2(M), the

functionals T, V, D are defined as;

1 f (t) (3u V
(u,v) -I (-;) )u I dx  (6.2a)

1 (t) 32 2V (u, V) f [EI(x) ( U V) ]dx (

0 x 2 ax
2

and
.Zt, 3(2u 2v _ 2) 0 2oU .3 2v

D (u,v) 1 ( ) I d (6.2c)

The functional H(u,v) will be called the formal Hamltonian of thae

system.

We also introduce the boundary product

~ _2L) +2 '2u)

Vol Dx 2  0 * Dx 3
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2 o . 2  022
Ox . OX 0

D2 V 2 2
+ (.)= V*X)~.Dx " x

2 V.2 ~ £t
+ 2.V) 2u (6.

The "Hamiltonian" H(u,v) is defined by

Hu u,v) i(u,v) + Hl(u,v), (6..4)

for all functions continuous on fl U M and of the Sobolev class

H 2(W)0

The corresponding Lagrangian can be defined simply as

L T - (V + D) (6.5)

provided Hs(u,v) -. 0. (6.5a)

For the sake of greater generality we shall consider a more abstract

formulation of this problem.

Let us denote by

au

Pu a t'pA au (6.6a)

PV /p A Cx --t (6.6b)

.e. p.. (P,) is the (linear) momentum density function corres~.e

to the displacements u(x,t) (v(x,t) respectively).
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Pu /Au , (6.6c)

2 CQ)HQ

2

M E u -
2 v  (6 . 6 )

V ax
2 2

0 2M, = BU,

22
B: H (S) a)- L W)6~

2jv, XT3 (6 . 6f)

41 v  *I(x) 2 v  (6. 6g)

Va

Cu M* (6.6h)

C: L2 M )  L2 (W)

the formal adjoint of C is defined by

2

C /E I (XTat 2

C* : ( Q)  L ( Q)
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The Hamilt6$ ian H(u,v) can be rewritten as:

H(UV) > + MU,M > + -(<Cu,v> + <u,C*v>
2u v 2u v 4

+ H f(uv) , (6.7)

def
<f-g>R=e g)dx. Th-e Lag'angian L(u,v) is given by

L(u,v) <Pu'Pv> - H(u,v) <,V> (6.)

Performing Frechet differentiation of L(u,v) with respect to v we

recover the equation (5.1) and the boundary conditions (5.1b). The

condition (5b) is so far ignored.

Differentiating (in the sense of Fr-chet) with respect to u

we obtain the adjoint homogeneous differential equation

32 32v_ 3 1\222
[El (x) EI W --- +.* () W2v - 2v 0 692 2 2 +-

with the "adjoint" boundary conditions

2 32v v2 -7 -- 0 at x - Z(t)

(6.10)
V ; v __ 0 at x. - 0•

7. .Aspects.
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We wish to minimize

J AIUII1 q20f (u (b 2j
j = t +B;Iu, , fL~uv ~n dtIC, (7.1)

by choosing the design D(x). 6nis a sufficiently small.] constant

acting as a penalty. This is a restatement1- of the Lagrangian

multiplier problem posed in (5.2).

~~efore at~~~tempting to minimiz J (or3suectoonrat)

we establish a Galerkin-type appzoximation to the equatiLons of

motion oft the system.

The search -for' natlaral nodes of vibrat'I'On.

We shall assume that tUhe deflection functions u (x t), v (x t)

which solve eguations '5.1), (6.9) respectively are of the form

u(x't) - I u (x19It))0 (t) (7 .2.)

n=1 n #

n=

%. t+P,with t. 1 t. At.- constant. On each subinterval[1 +1

Z1t) is regarded as constant. The average value of 9A(t) denoted by

z.i (10 being taken f rom a graph .

The approximate solutions on each subinterval are denoted by

u.(xlt), v.(x,t), and

u (X4 ,Q u .1,(x, J, J)' .?(t) 7.4
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n 

The functionals T, V, D are recouted

, j n, 3 (A l(tT(UV) "A U (Xnf Zt) V, ,(xx~ . :,.X)

.v ., k .

0
(7.4)

n 0 ax x
(7.5)

2 2Ct) U vDCu..v) In-j ft n- n, I
D5 .n t , .0)2 2,2 n.0

"- I .x) .(7.6)

0 3x o

Xf sufficient smoothness of solutions is assumned, then the

equations of motion are the usual Euler-Lagrange equations, asso-

clated with the action integral: f L dt.to

(7.7)
n nj

L(7.()
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Written out in full, we have the following system o' ordinary

di-fferential equations (in the variable t).

E*

n (n,j f 3[A(X)un,j(x'ZJ )vn j(XIj)] dx- 4 n'j 2 2n o0 z

v . d V .

dx3[(x) n, _-I 3 dx) = 0 (7.9)

2 + nj , 2  2 "
4x2

I" E* Z 2Un,j 2" .3v

n n,j f A(X)Un'Vn'jidx + - , f0 2  2 2' ]

2 u 2
~~ V~

+ Ef n, j0 [I(x) 2- , 2  dx f (x,t). (7.10)
2 ~ 0 ax ~

A homogeneous version of 7.10 (with. ffp (Xt 0) will be denoted by

(7.10") .

Th.is is a system of ordinary differential equations with con-

stant coefficients. Hence the solutions are of the form

x
nj a3 ,e + p,n,j (t) (7.11)

where Yp,n,j(t) is a particular solution of the equation (7.10).

In this case (since f (x,t) is a Dirac delta) a particular solutionp.

is easy to find provided the solution of the ,homogeneous system

(7... 2) is known.
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8. Effects of Projectile-. B arrel Interaction, Bourden Tube Effect

and More Detailed Analysis

Once the basic idea of the generalized Lagrangian is considered,

additional complications are taken care of by including more terms

in the total Kinetc energy product T(u,v), the total potential energy

product V(u,v) and the dissipation product D(u,v).

For example the effect of the projectile-tube interaction can

1 Z(t)
be approximated by adding to the term f [PAW _ _-Etdx

1 u v1m(a- a-) (8.1)
TX(t)

where X(t) is the predicted position of the projectile, during the

interaction period. The extra term (8.1) is set equal to zero

otherwise.

The Bourden tube effect can be approximated by considering

the following energy term:

VB+d =- .2 V I p d- dxf IB ' 0 ax 2 4

where p is the internal pressure p = p(t) and d. is the internal

diameter (the Caliber).

Other effects which seriously affect the behavior of the system

(for example the rate of spin of the projectile) are added when the

disorepancy between the test data -and the computot prediction based

on the mathematical model becomes too large to ignore.
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ABSTRACT

An in-bore dynaics model is currently under development at the Naval

Surface Weapons Center, Oahlgren Laboratory. During the initial phase

of the model formulation, two separate computer codes have been- generated.

One of the pr-grams is a six degree of freedom dynamics model for simu-

lating projectile balloting. The other is a finite difference model of

gun barrel motion and vibration. At the present time, the two codes

have only been run independently of one another, Thp progiauis can be

used for investigating, in detaiI the ballistic process. The effects

upon the projectile and barrel dynamics of factors such as manufacturing

tolerances for projectiles and barrels, projectile unbalan.ces, barrel

wear, barrel stiffness, etc. can be examined. Balloting affects the

initial yaw and yaw rate of the projectile as it exits the gun barrel.

These latter two parameters in turn govern the accuracy and dispersion

of the round.

This paper describes the two models that have been developed. The

results of several sample calculations carried out for a 76mm projectile

are presented.
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I. INTRODUCTION

A mathematical model for simulating the in-bora dynamics of projectile

balloting and gun tube motion is being developed at the Naval Surface

Weapons Center, Dahlgren Laboratory. Two computer codes have been generated

in the initial phase of the model formulation. One of the programs is a

six degree-of-freedom dynamics model for simulating projectile balloting;

the other is a model of gun barrel motion and vibration. At the present

time, the two codes have only been run independently of one another.

Eventually, the two will be coupled to permit them to run concurrently.

It will then be possible to determine the combined effects of barrel motion

and vibration upon projectile balloting, and conversely, the effects of

balloting upon the barrel dynamics. The essential variables to be obtained

from this simultaneous analysis are the initial maximum yaw and yaw rate

of the projectile after it exits the muzzle. These initial values can

then be combined with already existing exterior ballistics codes to provide

gun performance parameters such as accuracy and dispersion of the shot down-

range.

The basic premise for developing a pzojectile-barrel interaction model

is to be able to provide an analytical tool for examining problems which

may arise in the development of new and in some cases existing armament.

For example, while setback forces and accelerations can easily be obtained

from interior ballistics calculations, similar quantities for the pro-

jectile sideslap are not readily available. A balloting model could provide

the magnitudes of these unknowns. This is important for fuze designers and

would ensure at least that their products have been adequately designed to
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survive the in-bore launch environment. Similarly, this has bearing upon

the sophisticated projectiles being developed at the present time with

increasing amounts of electronics and mechanical hardware mounted on board.

Another possible application would be towards the new lightweight, high

rate of fire gun systems being developed to combat more maneuverable and

mobile enemy targets. By necessity, the systems require lightweight barrels

which are less stiff and which consequently may introduce more droop and

vibration than barrels employed in the past. The high rate of fire places

a requirement for improving heat transfer from the gun tube and may even

result in ribbed barrels. A mathematical model could be used to examine

the influences of barrel droop, varying barrel stiffness and cross-sectional.

areas, etc., upon the balloting motion.

With the model in its current status it is possible to relate the ex-

tent to which changes in various physical and geometrical parameters for the

projectile and barrel can influence balloting. The in-bore motion will in

turn govern the projectile yaw and yaw rate outside the muzzle. The model

permits examination of factors such as clearance between projectile

bourrelet and gun bore, projectile machining tolerances, projectile un-

balances, barrel wear, barrel stiffness, etc.

The following section describes the analytical treatment of the

balloting and barrel motion models that were developed. The results of

several sample calculations are presented afterwards to demonstrate the

..present capabilities of the two computer codes.

II. THEORY

Recent work being conducted in the field of modeling of the in-bore

projectile dynamic3 include investigations by F. J. Perdreauville (References

1-3) at Sandia Laboratories and S. H. Chu (References 4, 5) at Picatinny
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Arsenal. Chu derives the differential equations of motion using Euler's

approach. Perdreauville, on the other hand, applies Lagrangian dynamics

to obtain the equations of motion. The model that hasbeen developed at

the Naval Surface Weapons Center, Dahlgren Laboratory, also uses Lagrange's

method. Many of the assumptions being employed in the differing model

formulations are common to one another. A brief description of the theo-

retical treatment of the NSWC/DL model follows. Emphasis is placed upon

the coordinate systems, the equations of motion for both the projectile and

barrel, and the forces and moments involved in the in-bore dynamics.

A. Coordinate Systems

Fig. 1 illustrates the various coordinate systems being utilized

in the modeling procedure. The inertial XYZ reference frame is established

at the initial rammed position of the projectile within the gun tube. The

origin of the system lies in the plane of the rotating band. The X axis is

assumed to coincide with the bore centerline of a straight, rigid gun tube

at 0* quadrant elevation. The Y axis is taken to be positive in the verti-

cal direction; the Z axis is located in the horizontal plane as determined

by applying the right hand rule. The vector, r, locates the instantaneous

position of the origin of the body fixed xyz coordinate system with respect

to the inertial axes. The xyz origin also lies in the plane of the rotating

band with the x axis coincident with the projectile axis. An additional IJK

coordinate system, whose directions are parallel to the inertial directions,

is also utilized. The origin of the IJK system lies on the axis of the gun

tube and in the yz plane of the rotating band. The IJK origin is located

with respect to the inertial reference frame by the position vector rb.
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The vector 1o locates the body fixed xyz axes with respect to the IJK

system. The position vector, T, can then be expressed by

r = rb + .

Differentiating with respect to time twice, the acceleration vector, T,

becomes

T = 1 + o

The effects of the barrel upon the projectile balloting can be accounted for

by the acceleration vector, rb. Assuming rb to be a function of displace-

ment along the gun tube (represented as the path s), and also a function

of time t, (i.e., r j f(s,t)), the acceleration vector, rb, can be written

as

Dib s 2rb j 2rb D2 tb
as- at2

where

= velocity along the path, and

s = acceleration along the path.

The projectile velocity, s, and acceleration, s, can be obtained from in-

terior ballistics calculations, while the partial derivatives can be ob-

tained from the barrel motion model to be described later.

With the location of the projectile with respect to the inertial

reference frame specified, there remains the establishment of the relation-

ship between the orientation of the body fixed xyz system and the inertial

directions. The projectile orientation can be described in terms of the

Euler angles shown in Fig. 2. The origin of the XoYoZo coordinate system

illustrated coincides with the origin of the body fixed xyz system. The

directions of the XoYoZ o system are parallel to the inertial directions.
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The transformation from the inertial directions to the body fixed directions

can be achieved first by a rotation through an angle A about the X0 axis,

next by a rotation G about the new Zo axis (or line of modes), and finally

by a rotation 0 about the body y axis.

B. Equations of Motion for the Projectile

The equations of motion for the projectile are derived using

Lagrange's equation. The shell is considered to be a free rigid body whose

kinetic energy, T, is given by (see Reference 6)

T = mvo2 + (Ixux 2 + IyWy 2 + IzWz 2 -21xyWxWy -
21xzwxwz - 2 1yzywz)

+ m [Vox (W y - WJz) + voy(wzX - WxZ) + voz (WxY -

where

m = mass of the projectile,

vo = inertial space velocity of rotating band center,

vox, voy, voz = components of vo in the body fixed directions,

Tx, Ty, Iz, Ixy, Ixz, Iyz = moments and products of inertia

Wx, Wy, wz = components of the inertial space angular velocity about

the body fixed directions, and

x, y, z coordinates of the center of mass in the body fixed

coordinate system.

The linear inertial space velocity components, Vox, voy , and voz, can be

expressed in terms of the inertial XYZ directions. The angular velocities,

Wx, Wy, and wz, can be expressed in terms of the Euler angles, A, G, and 0.

Application of Lagrange's equation

d DT 3T
dt (Fy

q r r
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where

qr = generalized coordinates (such as X,Y,Z,A,G, and 0), and

Fqr = applied forces or moments in the directions of the genera-

lized coordinates,

yields six coupled partial differential equations of motion - three of

which are the force equations in the inertial X, Y, and Z directions and

the other three of which are moment equations in the Euler angle directions.

Writing the equations in matrix notation, the accelerations, XY,Z,A,G, and

0, can then be solved for by inversion. At NSWC/DL, a simulation language,

CSSL3 (Continuous System Simulation Language III, see Reference 7), is

utilized to integrate the accelerations to obtain velocities and displace-

ments. The integration technique currently being employed is a self starting,

variable time step, Runge-Kutta/Moulton scheme. The step size is adjusted as

the computations proceed in an effort to control the amount of integration

error.

C. Forces and Moments Acting on the Projectile

The applied forces and moments appearing in the equation of motion

for the projectile need to he specified. All the forces acting on the

shell must be given in terms of the ipertial directions. Moments must be

expressed in terms of the Euler angle directions to be compatible with the

forms of the derived equations.

1. Forces and Moments Due to Gravity

The weight of the projectile is considered to act at the center

of mass in the negative inertial Y direction. The origin of the body fixed

coordinate system is located in the plane of the rotating band. The

55



gravitational force will therefore introduce a torque about the origin

which needs to be included as part of 'the moment system being applied 'to

the projectile.

2. Force Acting at the Base

The force acting on the base of the projectile is obtained from

theoretical interior ballistics computations. These calculations usually

provide base pressure as a function of time which can easily be converted to

a driving force acting on the base. The force is assumed to act in the

positive inertial X direction. A shot start pressure can also be taken into

account. In this situation, the driving force on the base is not included

in the solution of the problem until the base pressure exceeds the shot

start pressure.

3. Rifling Torque

For a rifled gun barrel, the driving force acting on the base

of the projectile will impart a torque. The moment is considered to act in

the direction of the bore centerline. Its magnitude is determined as a

function of the rifling twist (e.g., expressed in turns per caliber) and of

the axial acceleration of the projectile along the path of the bore centerline.

4. Forces and Moments Due to Bourrelet Contact

When the projectile contacts the gun tube, the rebound force at

the bourrelet is accounted for by a simple spring deflection model as

illustrated in Fig. 3. The orientation of the shell as it travels down the

barrel is not restricted solely to within the confines of the gun bore.

Under the model formulation, elastic behavior of the projectile and barrel

are assumed. The displacement, 6, of the projectile into the bore determines

the magnitude of the rebound force. An appropriate value for the spring
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stiffness, kb, must be obtained from strength of material considerations or

from experimental procedures. The balloting force acts normal to the pro-

jectile centerline and also produces a moment about the origin of the body

fixed coordinates. The contact force also contributes a friction force

since the projectile is sliding on the walls of the gun tube. The direction

of the friction force is opposite to the sliding velocity vector at the

contact point. This velocity vector is composed of the velocity of the

shell in the direction of the gun axis centerline as well as the velocity

due to the -rifling spin. An appropriate value for the coefficient of sliding

friction must be selected. Again, since the friction force acts at the

bourrelet, the torque that it produces about the origin must be taken into

consideration.

5. Forces at the Rotating Eand

A rotating band model is incorporated into the balloting formu-

lation. Both torsional and transverse springs are included as shown in the

schematic diagram of Fig. 4. The springs act in the plane of the rotating band

and simulate the properties inherent to the band. The transverse springs

permit the origin of the body fixed coordinate system, which in essence

represents the projectile, to move about but not strictly along the gun tube

axis as shown in Fig. 5. An appropriate value for the spring stiffness, k,

must be determined analytically or experimentally. When the projectile is

engraved symmetrically, the transverse springs act to restore the projectile

origin towards the bore centerline. In the chse of an unsymmetrically

engraved band, the springs act to restore the projectile origin to the

eccentric p,iition. For the torsional spring, a projectile plane of yaw is
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assumed which contains both the positions of the gun tube and projectile

axes at the time of engraving. As the projectile travels down a rifled

barrel, this plane of yaw will rotate. The restoring torque will always

act in a direction perpendicular to the plane such that the initialorienta-

tion of the projectile is attained. The magnitude of the moment is cal-

culated based upon the difference between the angle of the initial pro-

jectile orientation and the instantaneous yaw. The value of the torsional

spring stiffness must also be determined analytically or experimentally.

6. Aerodynamic Forces and Moments

Once the projectile exits the muzzle, the forces and moments

due to the sources mentioned above all vanish except for those due to gra-

vity. To provide for a more realistic treatment of the exterior ballistics

(in order to determine more accurately quantities such as the initial

maximum projectile yaw and yaw rate), some aerodynamic forces and moments

are taken into consideration in the solution of the equations of motion.

Lift and drag forces', as well as a pitching moment, are calculated as deli-

neated in Fig. 6. It is assumed that values for CL, CD , and Cma, representing

the lift, drag, and pitching moment coefficients respectively,are available.

Upon muzzle exit, the projectile velocity is represented by the vector of

Fig. 6. The lift acts in the direction of the projectile yaw, and con-

sequently in the plane of yaw, perpendicular to the velocity vector. The

drag is taken to act in the direction opposite to the velocity vector. Both

of these forces act at the center of mass and produce moments about the origin

of the body fixed coordinates. The pitching moment is perpendicular to the

projectile plane of yaw and creates a torque in the direction of the pro-

jectile yaw.
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D. Equation of Motion for the Gun Tube

The gun barrel is considered to be a cantilever beam, clamped at

the breech end and free at the muzzle end. The differential equation of

motion for the transverse vibration of a beam is given by

a2  F 2- 2 r a r ai
- EI(X) Dj - [P(X,t)M +M(X) + C at=(X,t).

where

E = modulus of elasticity,

C = coefficient of damping,

I(X) = mass moment of inertia per unit length,

M(X) = mass per unit length,

P(X,t) = axial load per unit length,

F(X,t) = transverse load per unit length, and

W = transverse displacement vector.

Two separate equations of motion are actually represented in the above ex-

pression since the displacement vector can be written as

= Y(X,t) j + Z(X,t)k.

The j component accounts for motion in the vertical YZ inertial plane, the

k component for motion in the horizontal XZ inertial plane. Reference 8 has

shown that the effects of torsion upon the cross motion of the barrel are

small. The torsional effects have, therefore, been neglected in this formu-

lation. The barrel can be considered as a tapered hollow cylinder with

variable cross sectional areas, variable mass, and variable moments of inertia,

all as functions of position along the length of the tube. The axial loading,

P(X,t), and the transverse loading, F(X,t), are functions of both distance

along the gun tube and time. The .axial loading on the barrel may come in the
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form of recoil or of friction between the projectile and gun bore. The

transverse loadings may be obtained from the previous balloting considerations

wherein forces equal and opposite to those acting on the projectile at the

bourrelet and rotating band are taken to act upon the gun tube. A moving

load consisting of the weight of the projectile is also considered. The

equation of motion for each of the horizontal and vertical directions is

solved independently of the other by means of finite differences. The gun

barrel can be modeled by any number of discrete node points. Each node

will possess its own mass and moment of inertia. The motion of each point

is monitored throughout the duration of a calculation. The two independent

solutions can then be superimposed to yield the total gun barrel motion.

III. RESULTS

A. Projectile Balloting Model

The balloting model has 1een utilized to simulate the dynamics

of a 76mm projectile. The results of several sample calculations are pro-

vided in the following paragraphs.

1. Dynamically Balanced Projectile

The first computer run to be reviewed is for a dynamically

balanced projectile; hereafter this problem is denoted as Case 76.012.

The gun tube is assumed to be straight and rigid as will be the case in

all succeeding balloting runs to be presented here. The rotating band is

considered to be engraved symmetrically. Fig. 7 depicts the transverse

projectile motion at the bourrelet during the in-bore period. The trace

corresponds to the point on the projectile axis in the plane of the

bourrelet. The circle of diameter 0.014 in. (0.356mm) therefore represents
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the locus of this beurrelet point should the projectile just slide along

the bore surface. The dot on the circumference indicates the initial

projectile orientation inside the gun tube at the time of ramming. As

can be seen, the projectile is taken to be in contact with the bore initially.

The view illustrated is seen from the base of the projectile. The rifling

twist is clockwise. The model shows the projectile to ballot and precess

in the direction of the rifling. Fig. 8 depicts the in-bore yaw versus

time. The in-bore period is approximately 10 msec. The motion for the

most part oscillates about the limit set by the clearance between the

projectile and gun bore. A certain degree of elastic behavior is permitted

in the bourrelet and gun bore interaction and accounts for yaw angles

greater than that which can be attributed to clearance alone. Upon muzzle

ejection, aerodynamic lift and drag forces are taken to act upon the pro-

jectile in addition to the gravity force. An aerodynamic pitching moment

is also considered. The effects of muzzle blast during the transition

ballistics regime are neglected. Fig. 9 sbows the first maximum yaw outside

the muzzle to be about 7.52 degrees (0.131 rad). The calculated yaw outside

the muzzle will in general be sinusoidal with the minimum value being that

which occurred at muzzle ejection. Fig. 10 shows yaw rate versus time for

the 76mm. First maximum yaw rate occurs slightly after muzzle release and

is about 367 degrees per second (6.41 rad per second). The calculated yaw

rate will also be sinusoidal with a minimum value corresponding to the

negative of the first maximum. From the magnitudcs of these last two para-

meters, It should be possible to obtain accuracy and dispersion of the round

downrange by use of presently existing exterior ballistics codes. The

contact forces calculated at the bourrelet are shown in Fig. 11. The top
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diagram shows the friction force during contact. The force acts inter-

mittently, returning to zero whenever contact between the projectile and

bore is lost. A constant coefficient of friction of p=0.4 w,.s assumed so

that the normal force has the same appearance as this first figure except

for proportionately larger magnitudes. The latter two diagrams show the

decomposition of the contact force in each of the lateral directions.

2. Small Projectile Unbalance

The second sample calculation to be presented here, Case

76.212T, represents a projectile with 0.01 in. (0.254mm) center of mass

offset. The projectile is initially in contact with the bore in the lower

right quadrant as shown in Fig. 12. The unbalance itself is taken to be

in the twelve o'clock position. The projectile is seen to lift slightly

from the bore surface during the initial stages of motion. However, the

unbalance eventually takes effect and causes the projectilebourrelet to

essentially trace the gun bore circumference down the length of the tube.

The corresponding yaw versus time for this case is shown in Fig. 13.

Projectile ejection takes place shortly after 10 msec. The yaw outside the

muzzle reaches a maximum of about 6.38 degrees (0.111 rad). The yaw rate

versus time, illustrated in Fig. 14, shows the maximum to be approximately

358 degrees per second (6.24 rad per second). Fig. 15 depicts the balloting

force versus time curves in the three inertial directions. The bourrelet re-

tains sliding contact with the bore for the majority of the in-bore ride,

and consequently no repetitive impacts are noted in these curves compared to

those of Fig. 11. A comparison of the yaw, yaw rate, and bourrelet contact

forces, shows the slightly out-of-balance round to have a somewhat beneficial

effect upon the projectile performance over that of a balanced round. However,

the continual contact may adversely contribute to barrel wear.
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B. Gun Tube Motion Model

The geometry of.a 76mm/62 OT0 M4ELARA barrel is illustrated in the

cross-sectional view of Fig. 16. The barrel has a somewhat complex geometry

consisting of several tapered sections.

The results of the sample calculation of the barrel motion model

outlined here corresponds to Case 76.012 of the previous balloting runs.

The negative of the transverse loadings at the bourrelet from Fig. 11

coupled with the 76mm in-bore displacement-time curve were input as the

forcing function in the solution of the equations of motion for the barrel.

The transverse tube motion at the muzzle is illustrated in Fig. 17. The

barrel is initially drooped under it own weight - the muzzle deflection

from the horizontal being about 0.0111 in. (0.281mm). The dot on the

displacement curve corresponds to the projectile ejection time of 10.2 msec.

At this instant, the muzzle jump is 0.0015 in. (0.0381mm) but is on the

decline. The muzzle-deflection in the horizontal plane is 0.00527 in.

(0.134mm) in the negative Z direction at the time of muzzle release. The

results of this computation show very little muzzle deflection during the

in-bore projectile travel. Much larger motions are exhibited after pro-

jectile ejection.

IV. FUTURE WORK

Some of the capabilities of the projectile balloting and barrel

motion models have been demonstrated in the examples of the previous

sections. It would be desirable to investigate the effects of other para-

meter variations, such as clearances and stiffnesses, and to correlate

the results. A non-dimensional approach may be undertaken in order to
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generalize the results as much as possible to enable their application to

a wide variety of gun systems. The coupling of the two codes remains to

be concluded in the future. Once this is achieved, the total projectile

barrel interaction-dynamics will be described in detail. Experimental

confirmation of the codes is also required. Techniques for measuring pro-

jectile balloting and barrel motion were developed at NSWC/DL during FY 75.

Correlation of the experimental data with the numerical solution would

immensely increase user confidence in the program predictions.
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ABSTRACT

This work examines the likelihood of encountering parametric

resonance in gun tubes. The resonance is induced conceptually by

the periodic changes in transverse stiffness induced by

(i) the axial vibrations resulting from a single application of

ballistic pressure - "single round parametric resonance".

(ii) the periodic applications of ballistic pressure such as

encountered in an automatic weapon - "multiple round

parametric resonance".

Results show that ballistic cycles currently employed in the 60mm

MCAAAC semi automatic cannon are not likely to excite single round

resonance. Unusually brief cycles, however, are shown to be capable

of producing resonance amplifications of three orders of magnitude in

less than twenty cycles of axial vibration. By proper design of the

pressure cycle and/or the fundamental axial frequency of the tube, this

type of resonance is rather easily avoided.

Further results show that for the 20mm M139 machine gun, ampli-

fications in excess of fifty can be reached in under five seconds of

continuous firing. A special application of the work of Krajcinovic

and lerrmann leads to a set of instability contours from which the

growth (characteristic) exponent can be determined as a function of the

ratio of natural and excitation frequencies and the product of the

ballistic impulse and the tu'e slendernes's ratio. Control or

elimination of multi-round resonance can be maintained either through
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control of the initial conditions or by designing for mismatch

between the transverse frequencies and integral mulitples of one-half

the excitation frequency, i.e., the firing rate.
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INTRODUCTION AND BACKGROUND

Forced vibrations of undamped linear systems are characterized

by the differential equation:

+ wx ; w2 = k/m (1)

where m and k are the inertia and stiffness parameters of the system

and x represents the system displacement. Conventionally m and k are

constants and f is a time-variant force whic/n causes resonance if it/

contains a component having the system period 2n/vAk7m -. The resonant

term is linear in the time variable t and is a particular solution

of (1).

If w is-time dependent the solution of equation (1) is much more

complicated and in most cases has only been achieved through approximate

methods or numerical quadrature. An important subclass of problems

exists, however, for which a good deal of theoretical progress has been

made. These are problems in which the variation of w is periodic and

f is identically zero. Such cases are represented by the homogeneous

linear differential equation:

R + W2(t)x = 0 (2)

where W2 = - sV(t))
0

and is periodic in time. Since this equation is homogeneous it admits

a general solution of the form:

x = Axl(t) + Bx2(t) (2a)

where A and B depend only on the initial conditions of the problem.

Floquet's theorem allows for two solutions of the form:

IMorse, P. M. and Feshbach, H., Methods of Theoretical Physics, McGraw
Hill, 1953, 557.
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Xl.(t) ¢

-Y t

x2(t) = 2e (3)

Historically, equation (2) is known as.Hill's Equation and (3) are

its Floquet solutions. (See Appendix A.) The i(t) have the same

periodicity as the 'excitation' function t (t). Thus if y has a non-

zero real part, one of these solutions is unstable and the general

solution exhibits exponential growth provided that the initial

conditions. are not those which would cause the corresponding coefficient

of the growth term to vanish. Theoretically it has been shown2 that

unstable solutions can result whenever the ;ratio of a system natural

frequency to the frequency of excitation takes on values in the

neighborhoods of integral multiples of one-half (cf Fig. 1). Thus the

primary instability, for example, will be encountered when the

excitation frequency approaches twice a hatural frequency of the

system. We therefore have three fundamental differences between

conventional forced-resonance and that induced parametrically:

(a) Forced resonance is independent of the initial conditions

whereas parametric res6nance is not. Given a force component

operating at a natural frequency of a system, resonance must occur

whereas a parameter (stiffness, mass) varying periodically at 2/n

times the system frequency (n an integer) need not produce resonance

2Bolotin, V. V., The Dynamic Stability of Elastic Systems, Holden-Day,
1964, 22-23.
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if the initial conditions can be controlled. This is especially signif-

icant when the short term response of a system is of interest for there

is a wide choice of initial conditions for which the early response will

have decreasing amplitude.

(b) Forced resonance consists of oscillations whose amplitude

increases linearly with time whereas parametric resonance produces

exponential growth.

(c) Forced resonance occurs if and only if the forcing frequency

exactly equals a natural frequency of the system. In contrast parametric

resonance can occur whenever an integral multiple of the excitation

frequency approaches twice the value of a natural frequency. That is,

parametric resonance - unlike forced resonance - is not a singular

phenomenon but.occurs throughout the nieghborhood regions of a countable

infinity of critical frequency ratios. It is therefore a regional

phenomenon. An infinity of unstable regions exist, the most important

of which is the primary region of instability.

Effect of Linear Dampirg

The addition of the linear damping term, 2ck, into equation (2)

creates no complication since a transformation x = vw can always be
-fcdt

found (even when c is time dependent) - such that w = e and v solves

the differential equation:

v - [c2 + c - W(l - s4(t))]v : 0

which has the form of equation (2) and therefore possesses solutions

(3). Thus tAe[yt-fcdt] -[yt-fcdt]x = vw = A, 2 (t + B 2(t)e

i.e., the inclusion of a linear damping term results in a simple

subtraction from y.
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Two Examples of Hill's Equation

Several examples of Hill's equation are given in the literature2'3.

The one most often cited pertains to a beam column subjected to a

periodically varying axial compressive load P(t) such as depicted in

figure a below:

Figure (a) - Classical Beam Problem Governed by Hill's Equation

The governing differential equation from Euler-Bernoulli beam

theory is:
*El a u + P(t) a u + p 2u 0

3 3 -0(4)

As Krajcinovic and Hermann 5 have pointed out, an attempt to

separate variables through the substitution u(x,t) = X(t)f(t) will

result in the ordinary differential equation:

2Bolotin, V. V., The Dynamic Stability of ElasticS.Ystems, Holden-Day,
1964i 22-23.

3Den Hartog, J. P., Mechanical Vibrations, McGraw Hill, 1940, 378.
5Krajcinovic, P. P. and Hermann, G., Stability of Straight Bars
Subjected to Repeated Impulsive Copes on, MAA Jounl Oct 68,
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EXivX"
__ + P(t) -f
pX p X f

Since the right hand side of this equation is independent of x:

EIx~v = const =
PX

and
-X= const = aa
PX

Thus f + t[l - BP(t)]f = 0 (5a)

and EIX iv  -a X = 0 (5b)

iv
and EIX 4W X = 0 (5c)

While equation (5a) is the desired Hill's equation for the system,

the separation of variables approach is only valid when X(x) also

satisfies equations (5b) and (5c); i.e., the modes of free vibration

which solve (5b), must be identical to the buckling modes which solve

(5c). The case depicted in figure (a) - a hinged-hinged support

system - does in fact satisfy both of these conditions. In most cases,

however, the boundary conditions lead to modes which do not satisfy

both (5b) and (5c). In such cases an approximate Hill's equation can

be obtained through a variational procedure, such as that due to

Galerkin. In either case, therefore, the problem is reduced to the

analysis of equation (5a) where cc and j derive from an analysis which

is either exact or approximate.

Another example - one which more directly leads to Hill's

equation - considers a system with time-variant inertia, such as a

child pumping a swing (figure b). Essentially a concentrated mass is

raised and lowered periodically along a relatively massless rod
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(or chain, etc.) which pivots at 0. The rotational inertia of the

pendulum thus varies periodically in time. The example is one where

the path taken by the mass through the gravitational field results in

a net amount of work per cycle of the motion.

The equation of motion:

-A(t)mg sine = d

dZ de + m92 d2O

dtdt dt2  (6)

Approximating: sin 0 0,

d(t) + 2 d d + go = 0
dt2  dt dt

Figure (b) - Swing Problem Leading to
Hill's Equation

Defining k = to+h(t), T = wt, and 2 =g/o leads to the nondimensional

equivalent of equation (6):

(I + h(j)) 0 +2f +0  0 ; 2 ):d/d
£0 0

If h(T) =to cos 2T and only first order terms in c are retained:

O-4c sin 2rO + (I- cos 2T)O: 0 (7)
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Through the afore-mentioned transformation B : vw, the equation for

v and w are:

V + (1 + 3c cos 2T)v = 0 (Hill's Equation)

and w = e- cos 2 T

A great amount of consideration has been given6 to cases where the

'characteristic exponent' y, is purely imaginary and the periodic

excitation D t) is sinusoidal. Equation (2) then reads:

+ (a - 2q cos 2T)x = 0 (8)

This equation - a special case of Hill's equation - is called

Mathieu's Equation (canonical form). As with any Hill's equation,

Mathieu's equation yields periodic solutions (called Mathieu functions)

corresponding to purely im-ginary, rational values of the characteristic

exponent y. With a view toward special armament applications, however,

this report will deal only with the unstable solutions of Hill's

equation, i.e., those cases in which y is real.

PARAMETRIC EXCITATION - ARMAMENT

There are at least two possible sources of parametric excitation

in gun tubes - that is, two ways in which periodic coefficients can be

introduced into the beam equations of motion. The most obvious can be

called 'multiple round excitation' and derives from the periodicity

present in automatic weapons in which several time-variant forces

operate at the firing rate of the weapon. A reasonably comprehensive

6 FcI.achlan, N. W., T e noa__A._piation of Mathieu Functions,
Oxford Clarendon Press, 1947.
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differential equation includi~ig these forces was derived in a previous

report7. Figure (2) shows a cantilevered beam model of a gun tube

acted upon by several curvature-induced loads (constant projectile

velocity is assumed for simplicity). In general one observes

several time dependent coefficients multiplying the various displace-

ment derivatives. In automatic weapons, these coefficients are

reproduced periodically according to the firing rate and will appear

in the Hill's equation obtained upon integration of the space variable.

In this report the effects of only one such term will be investigated -

namely, that corresponding to the periodic ballistic pressure applied

axially at the breech.

A second and less obvious cause of parametric excitation derives

from the coupling between axial and transverse tube vibrations. The

simplest equation incorporating the necessary nonlinear coupling terms

was derived by Mclvor and Bernard8 in 1973. Essentially the idea is

that a single impulsively applied load will set a column ringing with

free axial vibrations. Nonlinear terms - oscillating at the frequency

of these Vibrations, couple with the transverse displacement variables

through the stiffness coefficients. We can call- this 'single round

excitation'. Thus kinetic energy from the axial vibrations can feed

transverse modes and lead to parametric resonance. The governing

7Simkins, T., Pflegl, G., Scanlon, R., Dynamic Response of the M113
Gun Tube to Travel1in Bailistic Pressure _anData Smothing as Applied
to XMl5 Ac-elrati o n- D-ta , WVT --'T R.-75015.
8 clvor, J. K., and Bernard, J. E., The Dynamic Response of Columns

Under Short Duration Axial Loads, Trans ASME, September 1973, 688.
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differential equations were solved by the authors through a Galerkin

procedure for the special case of a simply supported beam subjected to

an axial end load of short duration. [It should be noted, however,

that there is no guarantee that the variational quantity employed will

indeed admit an extremum when the associated differential operator is

nonlinear.] Since a good deal of energy is apt to be.consumed in

rigid body recoil in armament applications, fixed supports are to be

avoided. Consequently a tube (beam) cantilevered from end supports

which allow axial movement (figure 5) was chosen as the subject of

analysis for this report. (Relative motion of the support is ignored.)

Evidence of Parametric Resonance in Gun Tubes

In order to minimize shot dispersion in automatic weapons the

current design handbook9 dealing with gun tube design advises that

the ratio of the fundamental transverse frequency of the tube to the

firing rate be kept greater than 3.5. The basis for this value is a

plot of shot dispersion vs. frequency ratio Rf appearing in the handbook

and reproduced as figure 3 of this report. ,-.ferr~ig to this figure

three very prominent iaxima are observed at successive integral values

of Rf = 1,2 and 3. The reference cited in connection with this plot

10is a 1955 report by Wente, Shoenberger and Quinn of Purdue University

Their results, shown in figure 4, are in marked contrast to those of

figure 3, however. Absent is the maximum at Rf = 3.0 shown in figure 3.

9AMCP 706-252, En neerih9__Desin Handbook, Gun Series, Gun Tubes,
February 1964.

l0Wente, B. E., Schoenberger, R. L., and Quinn, B. E., An Investigation
of the Effort of the National Freueny-offVibration of the Barrel
Upon _the sDipesion of an Automatic Wapon, Purdue U., 1955, AD64132.
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It is also noted that figure 4 contains no information below the value

Rf = 1.0. Thus the only features conon to both figures are apparently

the maxima at Rf = 1.0 and Rf = 2.0. Accepting these maxima as the

only credible information to be gleaned from the reference publications

one searches for an explanation as to their cause. While the maximum

at Rf = 1.0 may be attributed either to parametric or to ordinary

(forced) resonance, that at Rf = 2.0 cannot be due to ordinary

resonance and may be evidence of parametric resonance - which, as

previously discussed, can be expected to occur near nominal values of

Rf = 1/2, 1, 3/2, .... n/2, .... Though parametric resonance should also

produce a dispersion maximum at Rf = 1.5 in Wente's plot, it may be

that it has been missed due to the paucity of data points.

Equations of Motion

The model chosen to represent armament applications is shown in

figure 5. The equations of motion which include coupling between

transverse and axial displacements are those of Mclvor and Bernard8.

Eliminating their dissipation parameter for simplicity, these are:

U - [u' +iv'2]' = 0 (9a)
2

V + a2viV- (u'v')' = b (9b)

Boundary Conditions

P(T)/EA = ca(0,T) = [- + 2 a

O= E (+,T)1 + (LV)2]i b

I8 clvor, J. K., and Bernard, J. E., The Dynamic Response of Columns
Under Short Duration-Axial Loads, Trans ASME, September 1973, 688.
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0= v(O,t) c

0= v" (l,-) d

0= v' (0,T) e

0= v" (t) f

where: u n/L = dimensionless axial displacement

v = E/L = dimensionless transverse displacement

s x/L = dimensionless coordinate

a2 I/AL2 = square of the reciprocal of the slenderness ratio

-r = at/L = dimensionless time variable

a = (EA/p) 1 2 = extensional wave speed

E Young's Modulus of Elasticity

A = Beam Cross sectional area

p = mass per unit length

I = area moment of inertia

P(T) = end loading, a-ballistic pressure funttion of

duration To

ea = axial strain including lowest ordered nonlinearity

Multiplying (9a) and (9b) by Su and 6v respectively and integrating

over the length of the beam:

1 1 2(USu - [u' + v'2]'Su)ds"= 0 (10a)
0

f(Vv - [u'v']'v + OC2v Vv)ds = 0 (lOb)
0-
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Using boundary conditions a and b together with an integration

by parts, (10a) becomes:

{U6u + [u' + Pu') 6u(O,T) = 0 (la)
0 2 EA

Similarly, boundary conditions b through f applied to (10b) yield:

l 1 v
f(V6v + u'v'6v' + a 2 v"6v")ds + 2 V'(l,T)36v(l ,T) = 0 (llb)

The !ast term in (llb) is an order higher than those retained and

is therefore ignored. Except for the boundary terms, equations (11)

are identical to those obtained by Mclvor and Bernard for the case of

a simply supported beam under end loading. Our boundary conditions,

however, dictate a choice of completely different approximating

functions in the Galerkin approach to solution. Since both ends of

the beam in our problem are free to move axially, we must choose

functions which do not constrain the function u at the end points (0,1),

i.e., there are no geometric constraints such as are present in the

problem solved by Mclvor and Bernard. A set of functions which appear

to satisfy these requirements:

u = jq.(T) cos jrs ; j = 0,1,2,... (12)j3

For the transverse motion, the eigenfunctions of a cantilevered beam

satisfy the conditions c thru f. Hence:

v = IT (T)W (s) ; m 1,2,3,... (13)
mm m
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where

Wm(s) = coshms - cos~ms - coshm + cos m (sinhms - sinms)in sinh~m + sinam

and the k have values 1.875, 4.694, 7.855, etc.; further values can

be found in any standard vibrations textbook (cf ref 11).

Substitution of (12) and (13) into equations (11) and making use

of the orthogonality of the trial functions. and the independence of the

variational quantities 6qj and 6Tm leads to the following sets of

nonlinearly coupled, ordinary differential equations:

0 qo = -P(T)/EA (14)

1,2,... qj + (j7r) 2qj +n AjmnTmTn = -2P(t)/EA (15a)

m = 1,2,... Tm + c2am4Tm + nAjmnqjTn = 0 (15b)

where the Aimn are defined from the integration:

I I
fv' 26u'ds =- rf JTmWm'jTnWn'j j6qj sinjsds = -. AjmnTmTnq j
0 Om n j=1, 2,... j,m,n

Table I gives the values of these coupling-coefficients through

A666. Equation (14) is decoupled from the others and being repre-

sentative of rigid body motion is of no further interest. Equations

(15) can be solved numerically by any of several numerical integration

programs 12 once a has been specified along with the nondimensional

load function P(T)/EA.

llNowacki, W., Dnamics of Elastic Systems, Chapman and Hall, 1963, 122.
12Ralston and Wilt, Mathematical Methods for Djgital Computations,
Wiley, 1960, 95-109.
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RESONANCE

During parametric resonance certain transverse coordinates T m(T)

become much larger than the rest. Thus the quadratic coupling terms can

be ignored except those expected to resonate. In single round resonance

it is expected that the response to P(T) will mainly occur in the ql(-r)

variable (i.e., the fundamental axial mode) and therefore only one

such term need be considered. If m = M represents the particular

transverse mode such that a&m2 = f/2, primary parametric resonance will

result. That is, the natural frequency aMH is half the frequency of

the exciting variable q, = Asinrr, T > To , where To is the duration

of the load pulse P(T).

For the study of single round parametric resonance therefore,

equations (15) reduce to:

ql + ulql = -2P(T)/EA - -2P*(r) ; T T0  (16a)

TM + (W2  + AMMqI(T))T M = 0 (16b)

In multiple.round resonance, transient axial vibrations are

ignored and the qj(T) are assumed to follow periodic applications of

the load func-tion quasi-statically. In this case, if the firing rate

is twice the Mth transverse frequency, parametric resonance will

result. Since all of the qj(T) are periodic according to the firing

rate., it 'is not 3cceptable to retain only the term in q, as in the case

of single round resonance. However, the amplitudes of these quasi-

static responses attenuate as 1/j 2 (neglecting the quadratic term in

15a) and only a few need be retained for accuracy. In place of
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equations (15) we therefore have:

qj + (j)2qj = -2P(T)/EA =-2P*(T) (17a)

TM + (aRM4 + JA.Mq ( =))TM = 0 (17b)

where OM 2  (weapon firing rate)/2

27T

The periodic character of the qj in either (16b) or (17b)

qualifies these as Hill's equations. As earlier indicated, the

general solution to Hills' equation can be written as:

TM(T) = af l (T)eYT + b 2(T)e-YT  (18)

where the *i are periodic functions having the period of qj.

It should be mentioned in passing that when y is real, a plot of

the solution (18) will always show oscillations near the natural

frequency afM 2 even though the i have the same period as q, i.e.,

27-
approximately half the natural period- -w-. That is, the periodicity

is not representative of the oscillatory appearance of the response.

It can be shown (see Appendix A) that once a solution for Hill's

equation is obtained over one period of the excitation, it can be

extended analytically for all time by means of Floquet's theorem.

Further, in the case of Mathieu's equation, analytical methods have

been developed leading to the direct determination of y, the character-

istic exponent. A detailed series of curves for this purpose were

developed by S. J. Zaroodny 13 in 1955.

13Zaroodny, S. J., An Elementary Review of the Mathieu-Hill Equation of
a Real Variable Based on Numerical Solutions, Ballistic Research
Laboratory Memo. Report 878, Aberdeen Proving Ground, MD, 1955.
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7

EXAMPLE I - THE MCAAAC GUN TUBE

It is of interest to assess the likelihood of encountering single

round parametric resonance in the particularly long and slender tube

planned for the Medium Caliber Anti-Armor Automatic Cannon* currently

in the design stage. To this end equations (16) will be employed after

first establishing the magnitude of P*(T) and the mode M in which

resonance might be expected.

Equation (16b) always possess the (trivial) solution T = 0.

This solution only applies when the 'initial' conditions of displacement

and velocity following the application of the load P(T) are identically

zero in which case the response TM will be null no matter how intense.

the 'excitation' qj(T). This is of little concern in armament

applications since a good deal of transverse motion is certain to be

excited by the firing of a round. For example the recoil of a slightly

curved gun tube or the motion of the projectile therein will always

excite some non-zero 'initial' motion. The axial vibration ql(T) in

response to the ballistic pressure pulse will generally result in

amplification of these initial motions by its appearance in equation (16)

if the parameter a happens to be 'tuned' for parametric resonance.

According to results from the latest finite element (NASTRAN) model

of the MCAAAC tube (see Table II), the fundamental axial frequency is

very close to being twice the frequency of the fifth transverse mode -

* The MCAAAC concept plans for a two or three round'burst' and is there-
fore not an automatic weapon in the same sense as a conventional machine
gun. Thus multi-round resonance is thought not to apply and the
investigation is confined to that of resonance which might be induced
from the firing of a single round.
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making primary parametric resonance of this mode a possibility if

enough axial excitation is produced from the application of ballistic

pressure to the breech. The parameters for a uniform beam model of

this tube were chosen, therefore, so that the fundamental axial

frequency of 580 hz corresponds to Tr in equation (16a) and-exactly

half this value corresponds to cs5
2 of equation (16b). A summary of the

pertinent parameters implied by these assumptions appears in Table III.

The load function is approximated by a haversine shape. Thus (16a)

reads:

21TT
+ 2q, = -P *(l - cos -) ; T <

0 ' 0
The response following the termination of ballistic pressure is

sinusoidal with amplitude:
1 sinirro/2 1

ql(max) 2P* (_-2)

Assuming negligable response from the other axial modes, equation

(16) becomes (for suitable choice of 'initial' time zero):

T5 + t2 5'(I + e cos ff)T5 = 0

where c = A155ql(max)/a2 5
4

Using values from Tables I and III, c is evaluated at 2.07 x 10-2.

The solution for T5 is given by expression (18). In view of the small-

ness of e and the precise state of tuning assumed, a very good

approximation for y can be obtained by the method of strained para-

meters14 . The result is:

14Nayfeh, A. H., Perturbation Methods, John Wiley, 1973, 63.
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In real time the magnitude of this exponent (see Table III) becomes:

2LE-x 1160 9.44
8

In general the coefficient of the growth term in (18) depends on

both the initial displacement and velocity of the Mth transverse mode

at 'time zero'. It is this quantity which is amplified, the remaining

term of (18) becoming less important as time moves on. As a specific

example it is notable that for certain initial conditions (see

Appendix A), the general solutiogi (18) degenerates to:

TM(T) = CI(r)eYT  ; y >'0

In this case any transverse initial displacement T5(0) is

amplified according to the multiplier eT. The real time computed

value of 9.44 implies an amplification factor of nearly three orders

of magnitude only 3/4 seconds after excitation. In practice, however,

this build-up is unlikely owing to the attenuating effect of damping

and the improbable state of tuning and initial conditions necessary

for maximum y.

The probability of experiencing single round parametric resonance

can be significantly increased if the duration of the ballistic cycle

becomes briefer than that assumed. Actually, it is the ratio of the

period of the ballistic pulse - whatever its shape - to the funda-

mental axial period which is of importance. Figure 615 shows the

1511arris, C. M., and Crede, C. E., Shock and Vibration Handbook,
Vol. I - Basic Theory and Measurements, M aw-Hll, 1961, 8-24.
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enormous influence of this ratio on the value of y. For example, a

haversine pulse of ratio 0.8 will solicit an axial response [ql(max]

which is about twenty-five tivies greater than the previous case

(where the ratio was approximately 3.5). Since y directly depends on

ql(max), an amplification of three orders of magnitude is realized in

less than seventeen cycles of axial vibration (about 30 milliseconds).

In view of this potential for large y it is therefore important that

the design of a weapon be such that axial vibration magnitudes be kept

small --principally by creating intentional mismatch between the

fundamental axial period and the period of the ballistic cycle.

Referring again to figure 6, a haversine ballistic period should be at

least twice the fundamental axial period. For ballistic pulse shapes

which deviate considerably from a haversine, a response spectrum

similar to that of figure 6 can be easily derived via computer.

Before moving on to a specific example in multiple round resonance,

some consideration should be given to the manner in which the excitation

differs from that considered in the single round situation. As

previously stated it is not the free axial vibrations but rather the

quasi-static responses of the axial modes which serve as excitation

of transverse vibrations. For example if P*(T) is a single haversine

pulse of duration TO:

i.e. P*(T) = P*/2(I - cos 27r// o

then the solution to (17a) is:
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P2 
2 2

q -P() 1( ) - 2 cos- + cos7jT (19)qjT- j)2L To'-(.)2 To T 2-( )

If To >> 2/j, the natural period, then

qj -2P*(T)/(jr) 2  (20)

that is, the response is quasi-static. In all weapons of short tube

length - typically automatic small arms - the ballistic period is much

longer than the fundamental hatural period of axial vibration and the

assumption, to >> 2/j is justified. Thus the oscillatory terms in

the solution (19) can be neglected with little sacrifice to accuracy.

On the other hand while T0 may be long compared to the fundamental

axial period, it is very short when comparedto the periods of the

first few transverse modes. It is tempting, therefore, to consider

replacing the qj(T) - as they appear in (17b) - by impulsive type terms.

It will be shown that such a replacement sacrifices little in the way

of accuracy and leads to a very convenient consolidation of results.

Multiple Round Parametric Resonance - Impulse Excitation

In 1968, D. P. Krajcinovic and G. Herrmann published work5 dealing

with the parametric resonance of bars subjected to repeated impulsive

compression. The equation studied by the authors can be obtained by

substituting the quasi-static solutions of (17a) Into (17b):

TM + PM2[I - vM P*(T')]T = 0 (21)

5Krajcinovic, P. P. and Herrmann, G., Stability of Straih Bars
Subjected to Repeated Impulsive Compression, AI-- Journal, Oct. 68,
2025-2027.
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where
g,, 2 a 2N and vM : Z2AjMM/(j7M) 2

The load function considered by Krajcinovic and Herrmann:

kcr,
P*(T) P* + Po* 1 6(6T - k&T) (22)

where T is the period of P*(r). Physically, (22) represents an

infinite series of impulsively applied compressive loads superposed

upon a steady load of magnitude PI*" 6(z) represents the Dirac

function and 0 is a parameter having the dimensions of frequency. In

practice the authors did not have to deal with the full load expression

(22) but only one cycle thereof, for example - a single impulse applied

at T = T. This is possible because Floquet theory (see Appendix A)

enables the solution over one period of the excitation to be extended

indefinitely in time. Furthermore, questions of stability can be

answered by considering whether the motion grows or decays as a result

of a single load application. Thus the load function actually used

for analysis was equivalent to:

P*() PO* ( - i)] (23)

that is, a single impulsively applied load at T = T

Defining VMPO* = pM, equation (21) becomes:

T + S1[l - P6(0(T - T))]T : 0 (24)

(The subscript H is implied throughout.)
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Now two linearly independent solutions to equation (24) which

satisfy the unitary initial conditions (26) are:

TI(-r) cos fr

tsin 2t (28)

•.T <T

In order to use the inequality (27), the values of T(-+) and

T2(t+) are required. While the functions themselves are continuous

at T = T , their derivatives are not - owing to the application of the

impulse at this instant. Thus the derivative, T2(T) cannot be

obtained by simply substituting into the derivative expression for T2.

The step change in the derivative, however, can be computed by a

direct integration of equation (24) over a short time interval

containing the point T = T.

i.e. .] +E T+E
- = f__ Q2[p6(0(T - )-l)]T(T)dT
TSC T- -

Since T(T) is continuous at T, the term 02T contributes nothing

to the integral as c is made vanishingly small. Thus

TJ'C : (+ 0) (29)

The right hand side of (29) derives from the relation:

f _(az)p(z)dz = a, f 6(z)4(-)dz - (0)
-0a -0 a jai

where 4(z) is a test function. Since 0 is arbitrary it can always be

chosen as positive and the absolute signs omitted accordingly.
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Stability Analysis

Floquet's theorem 16 guarantees the existence of particular

solutions T(T), to equation (24) such that

T(r + T) = pT(T) (25)

where T is the period of the applied load. We are interested in

determining the conditions under which p may be real and have an

absolute value greater than unity indicating a growth of the response

amplitude after one period of the excitation. Bolotin 17 has shown

that if two linearly independent solutions Tl(T) and T2(T) are

chosen which satisfy the so-called 'unitary conditions':

T(0)= 1 T1(O) = 0

(26)

T2 (0) = 0 T2(0) 1

then the equation for p becomes simply:

p 2  2A+ 1 = 0

where
e A [TI(T+) + T+)]

The condition that a value of p exists with IJP > 1, therefore amounts

to:

IAI > 1 (27)

It is also apparent that the two roots of the quadratic equation are

reciprbcal - i.e., plP 2 = 1.

16Meirovitch, L., Methods of AnalyticalDy.namics, 1,-cGraw-Hill, 1970,264.
17Bolotin, V. V., Tle Dynamic Stabilityf_ Elastic Systems, Holden-Day,

1964, 14.
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Thus, from (29):

T (T+ ) = Tj T2() + T2(T)= 0 T2 (T) + Cos s2 0 2 (-

hence JAI 2cos

Thus the instability condition (27) becomes:

JAI =12 sin lT + cos sT I > 1 (30)

In the work performed by Krajcinovic and Herrmann, 0 is defined

as being inversely proportional to T (0 = ) which is the customary

definition when treating continuous excitation functions. Adhering

to this definition in the case of repetitive, discontinuous loads,

however, leads to a load function which is physically improbable.

For the load function (23):

i.e. P*(t) = P 0*[0(T - T)]

the impulse of this load under the above definition of 0 becomes:

00P* P o*T
0 0

P f 6[0(T- T)]dT 0 - (31)

that is, the impulse strength is seen to depend on T , the period of

time between impulses. This is not the physical situation of interest

in armament - and many other - applications which imply a sequence of'

equally strong impulses independent of their spacing in time.

Fortunately, these cases can be handled merely by redefining 0, i.e.,

let 0 where To represents the duration of the ballistic load

function as shown in figure c.
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Figure (c) - Periodic Ballistic Pressure Function

Under this definition of 0, the impulse (31) becomes:
Po*0 = PO*T = I

0 O~0

Io is defined as an impulse conveyed by a load of average value Po*

and duration To . In practice P*(r) in equation (21) is to be

replaced by the load function PO*S[O(T-T)] which has the same impulse

as P*(T). Thus PO* must represent the nondimensional time average

axial load on the breech due to ballistic pressure.

The result of redefining 0 on the instability condition (30) is

considerable. Whereas the expression for A in (30) is purely a

function of ji and the ratio of the natural frequency to that of the

excitation, this is not the case when the meaning of 0 is changed.

Substituting 0 = l/T 0 into (30) the condition for instability becomes:
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IAI : I-7- sin sr + cos I> 1 (32)

Thus for the Mth equation (17b) we have j = jiM and S QM as previously

defined so that (32) becomes finally,

IAMI= I AjMM 10Ifl°TC0~T:AI= xL sin QfW + cos QM -
j (j TF M)2 0

CMl 0- I sin 2Tr--1+ cos 27-- (33)
We we

where definitions for CM and we are inferred, we now represents the
frequency of the impulse excitation instead of 0. A M is seen to

depend on I0/a - the product of the impulse and the slenderness ratio -

and the ratio of the unperturbed natural frequency to that of the

excitation. It is also apparent that in contrast to (30), Am is now

periodic in the frequency ratio implying equal stability criteria for

all 'zones' of instability 1M 1/2, 1, 3/2, .... n/2,We

The Characteristic Exponent - Maximum Value

The general solution to Hill's equation (17b) is given by (18).

This solution, having property (25), implies the following definition

for y, the characteristic, or 'growth', exponent:

Y ini- y real
T

For a given excitation frequency We, ? is a specified quantity and

maximum values of Ipi determine maximum y. In calculating the partic-

ular frequency ratio for which IpI will be maximum, we first let

n/2 + 6
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n designates the zone of instability while 6 a local coordinate to be

varied in searching for a maximum value of Ipi . Substituting in (33):

CMIo
AM= [- sin 2n6 + cos 276](-I) n

A= 0 = (-l)n [CMIo/a cos 27r6 - sin 27r6]

so that 1-tan-l CMIo- 6, a value of 6 for which AM is extreme.

27T 1

From (26b):

p AM "AM2 - 1
vAM

For extreme values of p:

S@AM  -1/2
3=  (1 - AM(AM - 1) ) = 0

Thus when 6 = 61 , p will also be extreme. Sub'stituting:

1 -+ - I'
'Iext I cos 2wr61 Co s22 61 -l

hence 1 ± sin 27T61
c max = I cos 261l I (34)

where the sign is chosen to agree with that of 61. Note that Ilm
max

is confirmed in (34) to be completely independent of the zone number
CM Io

n. For practical ranges of --- , 61 is small and can be consideredKa
a linear function of this parameter.

i.e. 27T61 = CMIo/a

and (34) gives: IPimax = 1 + Bafl

or - knlPlmax = CYIo/a , to a high degree of accuracy. (35)
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Figure 7 is a contour plot applicable to all instability zones.

The contours are curves InlpI = constant. The plot shows that the

instability becomes broader in band and that for larger values of the

parameter R = CMIO/a the values of lnlpI become less sensitive to
dP

variations in 6, i.e., the contour slopes L become flatter.

It still remains to determine the conditions under which a

repetitive load function can be justifiably replaced in Hill's

equation by a repetitive series of impulses. It is expected that these

conditions will not strongly depend on the particular shape of the

function involved but rather its duration, To and the frequency, Q

of the system on which it acts. For the sake of argument, therefore,

a sequence of rectangular pulses 4)(T) is chosen as excitation to Hill's

equation:

f +.S2 (1 - pA(T))f = 0

where
@(T) 1 1, 0 < T<T O

=0, T 0 < T < T

and
+ T =

The corresponding expression for A in this case turns out to be18:

A = (sin QTo cos PlTo -CO cos i pTsin QT +2Pl p (36)

+ (cos PITo cOS SIT o + -LP l -- sin sin PT0 )COS c2Pp !  lt

where p1

18Boltin, V. V., The Dynamic Stability of Elastic Systems, Holden-Day,
1964, 18.
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It is easily verified that for small values of the quantity fuo,

the expression for A above reduces to that in (32). Expanding the

transcendental terms containing the parameter QT o , and retaining up

to third order terms in this parameter, (36) becomes:

A = S1To/ 2 (I+0'2pTO/6) sin6i + cosai
0 CM 0  o

- -M- (1 + -M  - ) sin Q + cos
a a -

It is therefore concluded that if

Q 3a (37)T <CM1o

the approximation (33) will be good.

EXAMPLE II - M139 AUTOMATIC WEAPON

The 20mm M139 at first glance (figure 8) would appear to be.

vulnerable to transverse vibration excitation. It has the appearance

of a long and slender tube - as compared with, say, a typical .30

caliber gun such as illustrated in reference (9). Actually the

slenderness ratio of the two are nearly equal having values of

approximately 103 and 92 respectively. In spite of this our intuition

is not in error. As previously demonstrated, it is not the slenderness

ratio alone, but its product with the non-dimensional ballistic impulse

which determines the strength of the exponential growth in parametric

resonance. As it turns out, this impulse (Io) for the 20mm round is

nearly three times larger than that computed for the .30 cal weapon.

A complete set of calculations follow - leading to the evaluation

of the parameters CM and Io/a. The possible values of the growth
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exponent y are then determinable from figure (7).

A uniform tube approximation is assumed:

1.5 in - tube outer diameter

Di = 0.79 in - tube inner diameter

L = 72 in - overall tube length

PAV = 40,000 psi - time-average ballistic pressure

to = .0015 sec - effective duration time of ballistic pressure

function

a = 2.02xi0 5 in/sec - extensional Wave speed

E = 30xlO 6 psi - Young's Moduius of Elasticity

If the ratio of the unperturbed natural frequency Pm to the

excitation frequency we is nearly an integral multiple of 1/2,

parametric resonance is possible.

i.e., W 2 n/2 n : 1,2,3...
We 2- /

or T= nii
AFT

i is the time between rounds. In real time, t TL/a, corresponding

to a firing rate of 915 rounds per minute - a reasonable value in

practice. From the previously assigned values:

= L/AT= 103.3
- the slenderness ratio

If we choose M = 1, that is, parametric resonance of the fundamental

transverse mode of vibration, then for n = 2,
_ 2,Tt
-- A 184 and t .066 sec
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where we have used the value 8 1.875 - corresponding to the

fundamental mode of a cantilevered beam.

The nondimensional axial load (average)*:

=- 5.12xlO -4

0* 4EA

The duration of this load in nondimensional time:

a
,o  -t o = 4.21

Thus the nondimensional impulse is:

I = P*T = 21.58xi0
-4

o 0 0

Recalling the definition of CM:
AjMM

CM = X
j (jrrj) 2

For M 1, therefore:

A
C1  l .234

" [jr(.875)] 2

The parameter Ql1t0 must satisfy the smallness criterion (38); i.e.,

3ct
ITo << Cli

Substituting values for the parameters:

.0956 << 57.5
which would appear to be satisfactory.

*Note that the real quantity of interest is the nondimensional impulse,
Ig. If ballistic curves are available this quantity can be determined
directly by a simple integration.
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Expression (36), or equivalently figure (7) shows that the
greatest value for nlPla is .052. The corresponding growth

max

coefficient:
InIPlmax .052

Tmax x .066 .786

This value of y can produce a vibration amplification of over 50

in 5 seconds-of repeated firing. In other words if at any time during

firing the deflection of, say, the muzzle is a given amount then 5 sec

later this deflection can be over 50 times greater.

It is not likely that the exact state of tuning will exist such

that the maximum amplification will be realized. Furthermore, as

previously shown, damping will reduce the amplification. On the other-

hand there are other loads which have not been considered and which may

be non-mitigating. Reactions from the moving projectile and the

travelling propellant pressure as well as the relative movements of

supports are synchronous with the load considered in this report and may

add to its effect - possibly more than offsetting the reduction caused

by damping. Again it is mentioned in connection with figure (7) that

the state of tuning leading to large amplifications need not be as

precise when larger values of the abcissa are encountered.

Discussion

The models assumed in this report are of course, somewhat

idealized. It is always a question as to when more detail should be

included. How much is gained, for example, by including the geometry

of a variable cross sectional area when knowledge of the support
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conditions -is always so imprecise? Further, it is almost certain

that the general character of the results shown in figure 7 will

prevail regardless of the detail incorporated in the modeling effort.

That is, no matter how detailed the model, parametric resonance will

probably be confined to a narrow band of frequencies for the tensile

loads likely to be induced on the tube through firing. The frequency

is going to have to be 'just right' for it to occur. But given the

proper frequency ratio our preceding analysis definitely suggests

that ballistic forces are sufficient to create significant exponential

growth. It is doubtful if any higher degree of confidence in these

general findings could be obtained through the use of more refined

models. On the other hand, the frequencies and even the particular

mode which may resonate cannot be predicted with confidence unless an,

extremely detailed model is employed. Even then, in cases where

parametric resonance is suspect, field measurements should be made to

determine precisely the frequencies of free vibration and excitation.

As mentioned earlier in this report, there exists certain inconclusive

9,10
evidence that dispersion maxima observed in tests with certain

automatic weapons may be caused by parametric resonance. On the basis

of the feasibility demonstrated herein, it is advisable that such

experiments be repeated in a more tightly controlled manner so that

a conclusion may finally be drawn.

9AMCP 706-252, Engineerin Design Handbook, Gun Series, Gun Tubes,
February 1964.

10Wente, D. E., Schoenberger, R. L., and Quinn, B. E., An Investigation
of the Effort of the National Frequency of Vibration of the Barrel
Upon1the _In, Put, of an -uoma-"cWeap-on P Tdu-G-, I9Wq-A --64 132.
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APPENDIX A

HILL'S EQUATION - FLOQUET SOLUTIONS

The general differential equation of interest (Hill's Equation) is:

Y"1 + Q-2 [1 - D(t)]Y = 0 (Al)

where
P(t + T) = P(t)

Since equation Al is a second order linear, ordinary and homo-

geneous differential equation, its general solution can be written in

terms of any two solutions fl(t) and f2(t) which are known to be

linearly independent.

i.e. Y(t) = AfI(t) +.Bf 2(t) (A2)

where the constants A and B are determined by the initial conditions.

Because equation Al is unchanged if T is added to t, fl(t+T) and

f2(t+T) must also be solutions. But from the fundamental theory of

linear, homogeneous differential equations, any other solutions to Al

must be expressible as a linear combination of the linearly independent

solutions fl(t) and f2(t);

i.e. fl(t+T) = allfl(t) + al2f2(t)

f2(t+T) = a21fl(t) + a22fz(t) (A3)

There are many choices for fl(t) and f2(t) and with each choice

one can expect different coefficients a... Floquet (2) has shownlj

that among the t-hoices for these solutions there exist those such that:

Y(t+T) = pY(t) (A4)

that is, the solution one period of the excitation later, is a constant

multiple of the solution at time t.
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Substituting into A2:

Afl(t+T) + Bf2 (t+T) = p[AfI(t) + Bf2 (t)]

Using A3:
2
1 {Aaljfj.(t) + Ba 2jfj(t)) = p[Afl (t). + Bf2(t)]

j=l

Since fl and f2 are independent:

Aa11 + Ba21 = Ap

Aa12 + Ba22 = Bp (A5)

A5 only has nontrivial solutions if the determinant of the

coefficients of A and B vanish:

i.e., a11 -P a21  =0 (A6)

a12  a22 -.p

Substituting into either of the equations A5, each root p.

gives a ratio B/A such that the solution will satisfy the condition

A4.
B. = pj  a i~l

~- (A7)

=1 a21

In particular, if f1(t) and f2(t) are chosen to satisfy the so

called 'unitary initial conditions':

fl(O) = 1 f2 (O) = 0

fl. (0) :0 f 2' (0) :1

then, from A2:

A = Y(O)

B = Y'(0)

"2.8



and hence the ratio B/A is the ratio of initial conditions such that

A4 is satisfied. Further, from A3, definitions are given to the aij:

a11 = fl(T)

hence
a21 = f2(T)

al 2 = fl' (T)

a22  f2' (T)

P. -f(T)
and [Y'(O)/Y(O)]j (A f (T ) 8)

The quadratic equation for p (A6) becomes,:

p2 -2Ap +B =0

where**
A =1 [fl(T) + f2l(T)]

B = fl(T)f2'(T) - f2(T)fl'(T) (A9)

Multiplying the first of these equations by f2 and the second by

f and subtracting:

1 (19)f2"= ffl" = O

Integrating:

B fl(t)f 2'(t) - f2(t)fl'(t) const

The constant has unit value in view of the unitary initial conditions

employed.

19Boyce, W. E. and DiPrima, R. C., Elementary Differential Equations
and Bpundary Value Problems, John Wiley, 1966, 89.

*Note that this equation can be written W' 0, where W is the

Wronskian of fl(t) and f 2 (t). 12 12

**If any of the fi have jump discontinuities at t T, then A =A(T

is implied.
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Thus equation A6 becomes:

p'2 - 2Ap + 1 = 0 (AlO)

whereupon
p = A ± VA 2'_ 1

Note that the two roots of this equation are reciprocal, i.e. plP 2 = 1

Thus corresponding to real roots, A4 represents a solution which

grows or diminishes (according to the choice of p) following each

period of the excitation, T. The ratio of initial conditions which

will lead to either of these solutions alone is given by A8.

EXAMPLE - Delta Function Excitation

Let
X(t 6(t-kT)

k=l

From AlO, the roots p, depend entirely on the quantity

A = i [fl(T) + f2'(T)]

where fl(t) and f2(t) are linearly independent solutions of Hill's

Equation (Al) satisfying unitary initial conditions. These can be

chosen as:

fl(t) = cos Qt

f2(t) = sin Ot (All)

Thus fi(T) = cos QT

The expression obtained by a formal differentiation of f2(t)

above, is valid up to but not including time t = T since the

application of the first 'impulse' will cause f2' (T) to be discontinuous.

This jump discontinuity can be evaluated by an integration of Hill's

Equation (Al):

120



T+At
f2 (T) - f 2' (T-) = lim fS12[E:6(t-T)-l~f2(t)dt =Q € f2(T)

At4O T-At

Thus

f2' (T) = cosinQT + cosQT

and A = E sinT + cosT

2

whereupon the roots p,, P2 may be evaluated.

For any given finite value of c, intervals of the parameter QT

exist such that these roots will be real and since their product must

be unity, the following possibilities arise:

(i) P1 = P2 = ± 1

(ii) Pi > 1, P2 < l

Case (i) represent borderline situations, that is, the solutions A4

neither grow or decay with each period*T of the excitation. Case (ii),

on the other hand, produces one solution of the form A4 which grows in

amplitude by a factor p1 > 1 and another which decays by the factor

P < 1, each period of the excitation. The initial conditions which

produce either of these solutions must only satisfy A8,

i~e. Y 0)= Pifl.( T )
i.e. Y) K f(T) = [Pi - cosl']?/sinQT

Y(O) f 2(T)

Figure Al(a,b) shows the solution when this ratio is enforced. In

general, however, the solution for arbitrary initial conditions is a

linear combination of these special solutions of pure growth and decay.

Figure Al(c) shows one such solution exhibiting early decay even-

tually to be overpowered by the growing solution.
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.17
The solutions of pure growth or pure decay can be represented as:

t in p.

f.(t) MteT 3(A12)

where
p1(t+T) = Mp(t

so that indeed, 
+1 np

f.i(t+T) = p(teT lPn i fj(t)

as required. In general p is complex

hence
in pj = lnjp.I + i arg(p)

Thus Illjp.
f.(t) = (teT 3

where it arg p~ (A13)
t)= (~

When the pj are real, j(t) = p.t) and are periodic in T. Thus

the general solution to Hill's equation may be written

Y~~t) I- nip, I L lnj 2
Y~t) = C ,(t~eT+ CG2p2(t)eT I2

or, enforcing the relation plp 2 =1:

Y(t) = tlnpi + C 2p(t)e T

oiV. V., SfjLy~i tability of .lasti cj Stes, Holden-Day,
1964, 14.
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TABLE I*- COUPLING COEFFICIENTS A.
jmn

A -9.83 A = 11.1

A111  121

A1 2 = 11.1 A 22 -50.1
A11 3  7.71 A 23: 16.4

A114 = 1.91 A12 4 = 30.3

A 15 : 1.68 A25 = 6.93

A = .819 A126 : 7.54

A131 = 7.71 A141 = 1.91

A132 = 16.4 A142 : 30.3

A = -128. A43 = 18.4

A34 = 18.4 A144 = -247.

A 135 69.6 A145 = 18.9

A136 11.3 AI46 = 122.

A151 1.68 A161 = .819

A152 = 6.93 A162 = 7.54

A153 69.6 A 163= 11.3

A154 : 19.0 A164 = 122.

A155 = -404. A165 
= 19.3

A156 = 19.3 A166 = -601.

*Certain symmetries are evident throughout the Table. No attempt has

been made to make use of symmetry properties in order to shorten the
tabulation.
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A 211 9.78 A2 1 : -48.6

A = -48.6 A2 2 2 = 84.5

A2 13 : 26.3 A2 2 3 : -115.

A214 = 25.4 A224 = 45.7

A215 = 3.35 A225 = 92.8

A216 = 5.94 A226 = 18.4

A231 = 26.3 A241 = 25.4

A232 = -115. A24 2 = 45.7
A233 = 94.5 A243 = -247.

A234 = -247. A244 = 89.5
A235 61.6 A245 = -433.

A236 = 201. A246 = 68.9

A25 1 = 3.35 A26 1 = 5.94

A252 = 92.8 A262 = 18.4

A253 = 61.6 A263 = 201.

A254 = -433. A264 = 68.8
A255 85.9 A265 = -670.

A256 -670. A266 = 93.4
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A311 : -6.53 A321 = 33.8

A312 = 33.8 A322 = -174.

A313 = -112. A323 = 164.

A314 = 45.5 A324 = -216.

A = 53.4 A325 = 73.1

A316  2.50 A326 = 183.

A331 = -112. A341  45.5

A332 = 164. A34 2 = -216;

A333 = -156. A343 = 196.

A334 = 196. A344 = -279.

A335 = -434. A345 = 197.

A336  ill. A = -722.

A351 = 53.4 A361 = 2.50

A = 73.1 A362 = 183.
35236

A353 = -434. A363 = ill.

A354 = 197. A364 = -722.

A355 = -440. A365 = 194.

A356 = 194. A = -639.
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A41  8.19 A42  =23.1

A 412 = -23.1 A 422 =108.

A413 = 62.5 A 423 =-351.

A = 201.A 42 266-
A414 =-2144

A 415 = 68.8 A 425  --349.

A416 = 91.8 A426 = 98.3

A 431 = 62.5 A 441 = -201.

A432 = -351. A 42= 266.

A43  273.. A443 = -237.

A 434 =-237. 
A 44= 366.

A 435 =303. 
A 445 = -394.

= -74.A 316.
A 436  = -7 .446 '

A451 = 68.8 A 461 =91.8

A45  = -349. A462 =9.

A 453 = 303. A 463 = -674.

A454  -394 . A464 = 316.

A381. A = - 588.
A455  

465

A456 = 588. A 466 =375.
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A51  =7.19 A52  28.9
A511 522

A513 =-38.5 A523 =13

A =98.5 A52  56
514 54 -8

A 1 = -316. A52  390.

A 516 =96.6 A 526 =-512.

A53  =38.5 A =98.5531 541
A53  183. A5  --586.

A 533  --66.9 A 543 =401.

A534 =401. A 544 =-324.

A 55 -339. A 545 =535.

A56 420. A 54 -542.

A55  -316. A = 96.6
551 561

A 390. A = 512.A552  562

A = 339. A 56  420.
553 6
A 535. A = 542.

A554  564

A55  =494.' A56  575.

A55  575. A = 698.
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A611 = 7.85 A621 = -24.7

A612 = -24.7 
A622 = 101.

A = 49.3 A623 = -130.
613

A614 = -56.3 A624 = 270.

A615 = 142. A625 = -878.

' A616 = -456. A626 = 539.

- A631 = 49.3 A641 
= -56.3

A632 = -130. A642 = 271.

A633 = 296. A643 = -1078.

A634 = -1078.. A644 = 556.

A635 = 552. A = -432.

A636 =-459. A646 = 716.

A651
= 142. A661 = -456.

A652 = -878. A662 = 539.

A653 = 552. A663 = -459.

A654 = -432. A664 = 716.

A = 750. A = -632.
65565A656 = -632. A666 = 836.
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TABLE II - EIGENVALUE ANALYSIS (NASTRAN) - MCAAAC, 60MM

(Trussed Configuration)

Mode Type Frequency (hz)

Recoil mode 1.81

Fundamental Transverse mode 79.5

2nd Transverse mode 100.5

3rd Transverse mode 125.6

4th Transverse mode 218.7

5th Transverse mode 296.2

6th Transverse mode 412.7

7th Transverse mode 525.9

Fundamental Axial mode 580.1

2nd Axial mode 1189.2

3rd Axial mode 1898.4

4th Axial mode 2496.2

I 1
- 4_ _-- -.~ la- 5



TABLE III - PARAMETRIC VALUES, MCAAAC TUBE

The parametric values listed below are based on 
the material constants

Epfor steel, a peak ballistic pressure of 75,500 
psi, and the NASTRAN-

predicted frequencies for the fundamental axial vibration and the fifth

transverse vibration modes.
-5

c2  
6.44x 0

t= 1160

P__ = 0o_(.- cos -o)

EA 2

'-4
Po* =7.03x10-

o= 6.96
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ABSTRACT

The possibility for balloting-energy growth is examined, The basic

equations are developed and the important parameters for 
balloting motion

are obtained and discussed. It is concluded from the analysis that

balloting-energy growth can not occur for conventionally 
designed

projectiles.
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I. Introduction

The energy contained in the shell's transverse motion directed toward

a bore surface has supposedly become large enough on certain occasions to

damage both shell and the gun tube. As Gay [1] has shown, the theories of

Reno [2] and Thomas [3] do not predict that such large balloting energies

may develop. Reno does not consider sliding friction but assumes that the

plane of yaw rotates with the shell. Thomas [2] does not use this constraint

but assumes that there exists sliding friction between bourrelet and bore.

Chu and Soechting [4] extends Thomas' [2] theory to assume sliding friction

between rotating band and bore and also assumes that the shell may have an

eccentricity in its center of gravity; here the balloting energy should also

decrease with time.

More recently, Walker [5] has developed a theory which predicts that

growth in balloting energy may occur. His theory extends Thomas' theory

by further assuming friction between the bore and rotating band. According

to Walker, the impact impulse generated by the bourrelet hitting a land

is followed (due to the finite speed of the elastic wave) by a reaction

impulse which occurs on the opposite side of the shell at the rotating band.

This causes an added frictional force on this part of the rotating band

and results in an impulse of torque that will possibly increase the total

transverse angular momentum possessed by the shell. The magnitude of this

added angular momentum is proportional to the effective coefficient of

friction for the rotating band. The resulting theory is used to explain

the breakup of the 8" XM 201 shell in the MIIOE2 gun tube [5, 6].

Originally, it was desired to apply Walker's [5] theory of balloting

to Chu and Soechting's [4] computer description of in-bore motion. In

studying Walker's theory, however, it appears that the theory is formulated
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incorrectly. Also the values used for the coefficients of friction are

thought to be in error by an order of magnitude. The revised theory

together with more realistic values of the coefficients of friction result

in a completely different picture of balloting-energy growth and decay.

It is the purpose of this report to present this more accurate picture

and to establish upper-bound limits on the energy growth rate or decay

that may be expected.

One apparent error in the formulation of the theory concerns the

magnitude of the reaction impulse at the rotating band. Walker claims

that the reaction force at the rotating band is equal and opposite to the

imact force on the bourrelet. Walker deduces this from his following

statement: "The force component Y1 is given by the requirement that the

sum of the forces acting in the y direction is zero." Here Y' is the

normal reaction force at the rotating band. If this were a statics problem,

his approach might be valid. Nevertheless, this is a dynamics problem,

we must replace his requirement from statics with requirements about how

the projectile is constrained to move. If this is done, it is found that

the value of the reaction force depends upon the values for the shell of

the location of the center of gravity, the distance between the rotating

band and bourrelet and the radius of gyration.

According to Walker's [5] theory, since the growth rate of balloting

energy is a strong function of the value of the coefficient of friction

at the rotating band, it is an important parameter. Walker used a rotating-

band coefficient of friction of 0.55, a value that might be expected for

slow sliding velocities under small normal pressures. In order

to arrive at reasonable values for these coefficients of friction, both
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the theory and experiment were investigated. According to a report [7]

summarizing the Franklin Institute's experiments, the coefficient of friction

decreases for both increasing values of sliding velocities and values of

normal pressures. Herzfeld and Kosson [8] postulated that a hydrodynamic

film exists between the rotating band and bore at the higher speeds; they

found agreement with much of the experimental data available at the time.

Bowden [9], however, describes ai experiment that shows no hydreynamic

film being generated at typical in-bore projectile velocities. Nevertheless,

the normal pressures for this experiment were much less than found at the

rotating band and bore interface. Thus, although Herzfeld and Kosson's [8]

theory agrees with experiment and appears plausible, the theory is not

completely confirmed.

II. The Differential Equations of Motion

In this section, the differential equations of motion obtained by

Walker are developed to prepare the way for a discussion of balloting-

energy growth or decay. The development is repeated here also for the

sake of clarity.

Following Walker, we will utilize Thomas' assumptions and in addition

we will assume that friction exists between the rotating band and bore due

to the reaction forces. The description of the motion will be given in

Eul.erian angles. The rotations defining the Eulerian angles are given

according to Goldstein [10] in Figure 1. For more clarity, Figure 2 gives

some of the axes in terms of the gun-projectile system. The kinetic energy

of an axially symmetric shell with respect to the point C is

2) + 15 2
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b It

Figure 2. Description of projectile's orientation given in terms of
Euler angles. The amount of yaw about the point C is given
in terms of 0 and the plane of yaw is given -by the angle
between the line of nodes and >X. The inertial force F
along the bore line z is also given. Also shown is the
distance between the rotating band and bourrelet a, the
distance from C to the center of gravity CG and the radius

of the bourrelet b. 15
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where u. is the angular velocity about the i'th axis and A is the axial1

moment of inertia about the line of axial symmetry. The transverse moment

of inertia I about C is given as

1 = B+4A 2  (2)

Where B is the transverse moment of inertia about the c.g., m is the mass of

the shell, and h is the distance from the point C to the c.g. of the shell.

Transforming to the Eulerian angle description, it is obtained that

T = -I (i + si 4; -i j+ -LA($P 4 ao,9) 2  (3)

For the projectile having the acceleration s, the potential energy is

V = f Cor (4)

Following Walker now, except to vary the presentation for clarification

purposes, we have that the Lagrongian is

L = T - V

The Lagrangian equations are

d bL - L

where

06 "(6)

and the Q, are the generalized constraint forces imposed upon the projectile

by the gun tube. The generalized force Q in the 0 direction is simply

the torque about the line of nodes given by the axis in Figure 1. The
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expression for would be

Q1  ~ -I-(7)

where 1 and 2 are the forces on the bourrelet along n and z .respectively.

The subscript b refers to the quantities at the rotating band. These

forces would be positive when they are pointing in the direction of increasing

coordinate values. From the geometry of Figure 2 we have that

- a Cos-- - b sit)- (8a)

~bcoS O -- - (8b)

lib r (8c)

Zb= 0 (8d)

Thus

-( o - s..o -(bca .- osihO) + r b (9)

For the ¢ coordinate, the torque would be along the z direction

Q~~-i h4~ lN. os. (10)

Here N is the torque on the projectile transmitted through the rotatinga

band.

From Eqs. (8b) and (8c), we have that

Q2 (b COS - +CSini-~r+ Ncs

Here it is assumed that the rotating band does deform into a section of a

sphere of radius r. Otherwise the expression would be somewhat more complex.

For the ip coordinate, the torque along le z' direction would be
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Here we have that n' = b, b = r, and b= b Thus we have that

Q3 -~ r~ IN (13)

The Lagrange equations in Eulerian coordinates become, from Eqs. (3)

through (13)

. I o - -A('+, cos P) sin,& - ',n,,ib ,n-e-

-La ~ +(14)-(a Cos -.-b sin lg (bcos a-a i ) + r (4

d ., A( "' + co .cos. -
dtb

(.b cos -a. + a sin -a) - r , -* Ncos

d o - -r " (16)

These are essentially'the equations that Walker [5] obtained also.

We can now examine the generalized forces in greater detail. The forces

n, z and act on the projectile during the impact of the bourrelet. The

details of the ) force during impact will be discussed later. The z and

forces are caused by the presence of friction during impact and adopting

Thomas' assumption,

- -" II (17)

The direction of the force will be opposite to the direction of the ( component

of velocity at the bourrelet's point of contact, Since the motion of the

shell is in the positive z direction and z is a frictional component of

force, the direction of - is in the negative z direction and z is

a negative quantity. Thus, according to Thomas:

- (a s)
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(18)

Tle sign of the may now be investigated. The quantity P + € cos 0

is simply the angular velocity about the body symmetric axis 6 and is a

known quantity from the relationship

o( = T ./ r n) (19)

Here n is the number of calibers traveled for the projectile to perform

one revolution. Since sin 0 is a small quantity and it is- expected that

might be similar in magnitude to & , using Eq. (19) we can approximate

Eq. (18) by

I T / (20)

Since is a negative quantity, Z is also a negative quantity from

Eq. (20). Substituting Eq. (20) into Eq. (17) we obtain that

~ (21)

Now by similar reasoning as was applied before to find the frictional

force relationships between the force components at the bourrelet, the

force relationships at the rotating band are found to be

S= 7Tabf (22)

: ' /( M ) / "(23)
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III. Friction Coefficients

Since the band coefficient of friction is found to be an important

parameter for describing balloting motion, it will be discussed in more

detail. Besides the experiments conducted at the Franklin Institute

[7, 11] and results reported by Bowden [9], friction coefficients were

obtained by Sauer [12] using a rocket sled. The pressures, though high,

were much less than experienced by a rotating band in-bore. Nevertheless,

he obtained evidence that a molten metal film existed at least for their

higher pressures. In addition, he developed a theory for wear and friction

assuming molten metal at the interface [13]. In the present paper, it

will be assumed that a molten-metal film exists at the rubbing interfaces.

As mentioned earlier, experiments show that the coefficient of

friction decreases for increasing values of both sliding velocities and

normal loadings [7, 11]. With these data and in addition some data obtained

for higher pressures by using a shell pusher, Pilcher and Wineholt [14], in

a correlation study, have obtained the coefficient of friction as a function

of velocity and pressure. These data were obtained for a steady-state

process; i.e., the temperature profile through the thickness of the traveling

block changes rapidly shortly after initiation of the friction process and

thereafter approaches a steady-state profile. Since the shell's travel

through the length of the gun-tube is a transient process, there exists

the possibility that steady-state conditions would not be approximated.

Nevertheless, the application of an equation developed by If. G. Landau [15]

shows that steady-state conditions will be approximated for most of the

projectile's travel in-bore. The application of Hlerzfeld and Kosson's [8]
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theory confirms the results obtained by Landau's [15] equation.

The values of the band-friction coefficient for a large-caliber

projectile may be obtained by using Pilcher and Wineholt's [14]

formulation. Friction-coefficient values are calculated for the 8" XM 201

projectile that broke up in-bore. Figure 3 gives these values as a

function of shell velocity. Here it is seen that the coefficient of friction,

decreases with the distance that the shell has traveled in-bore. For

most of the distance traveled, the friction coefficient is an order of

magnitude lower than common handbook values.

The friction coefficient values obtained are for steady pressures

of the band on the bore surfaces. There exists the possibility that

during the reaction impulse, the liquid metal film could become much

reduced in thickness and essentially solid to solid contact could be

made. This form of contact would tend to raise the effective coefficient

of friction. Herzfeld and Kosson's theory will be used to investigate

this possibility since the formulation is simple and there is some

agreement with experiment.

To investigate the extent of film thinning due to the impulse,

consider a block of mass Ne with a liquid film separating the block from

a plane surface. The geometry is exhibited in Figure 4. The initial

thickness of this liquid film is 6 . The width of this block is 2 a
0 l

If the block is given an initial velocity Vo, at some later time the

velocity of the block will be V and the thickness of the film will be 6.

A coordinate system may be constructed as shown with the origin of the

coordinate system placed halfway between the plane surface and the

surface of the block. The length of the block z is assumed large enough
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Figure 3. Rotating-band friction coefficient of 8" XM201
projectile as a function of projectile velocity.
The pressure at the rotating-band is estimated as
3.1"I0 Pa.
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y1

Figure 4. Collision of flat parallel surfaces separated by
a molten metal film of thickness ~
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so that fluid outflow travels essentially in a line parallel to the X

coordinate. The thickness of the film is assumed small enough so that

the Navier-Stckes equations may be approximated with

a

- cdx, (24)

with boundary conditions

qj4o±0/ 2 P 0) X+=a

Here u1 is the component of fluid velocity in the direction Xl, p is the

pressure which varies only in the X direction and y is the viscosity

coefficient. The part of the solution of interest here is for p:

P= (a,2 Xi) (25)

Now the block loses kinetic energy according to

Me V d -F dS (26)

where

F-2 ,J' pdx, (27)

0
Integrating Eq. (27), substituting the resulting expression for F into

Eq. (26) and integrating, it is obtained that

The final value of film thickness 6t is found when V = 0. Preliminary

investigations showed that 6t was near in value to 6 . Thus, one may
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obtain the expression:

80 3 (29)
$o32 Z. X~, 0

The expression for 6 may be obtained from Herzfeld and Kosson's report.0

When the- projectile is somewhat away from the breech, the value of 6 may0

be approximated as

0 2(& 7 ~ r~(30)

Here pT is the density of the tube material, CT is the heat capacity of the

tube material, Tb is the melting point for the band material and kT is the

thermal conductivity of the gun tube material. Now equating M V with thee o

expression for the reaction impulse given the rotating band at or after

impact, rearranging the expression so it may be given in terms of the

balloting energy e and substituting into Eq. (29), it is obtained that0

__ _ _(21 .) &(I+e)IRI SOO'

- (31)

Here z would be of the order of the radius of the projectile.0

The values for 6 0and (6 - 6/60 may be readily calculated. An

initial value of c 0" 5 joules was used by Walker. The other data would

be as follows

a = 23.06 cm

a1 = 2.5 cm

I = 6.171.107 gm cm2

z = 10c Cil
0

PT CT = 1.053 cal/cm /k
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Tb "1000 K

V = 8.104 cm/s

kT = 0.105 cal/cm/s/K

y = 0.035 poise

IRI4 0.5

Substituting into Eq. (30) with the suitable value, it is obtained that

6 0 7 - 10- 4cm. Substituting data into Eq. (31), it is obtained that
0

(6 - 6t)/6 ° = 0.012. Thus it is seen that the liquid layer would be

thinned only an insignificant amount. The effective coefficient of

friction for the reaction impulse would be expected to approximate values

obtained for land-friction coefficients.

IV. Balloting-Energy Analysis

If the 0 component of momentum can grow, the impacts of the bourrelet

on the gun-bore surface could possibly cause extensive damage. It is of

interest then to closely examine Walker's [5] mechanism for energy growth

as discussed earlier. It is also desired to obtain a closed form expression

for the balloting energy if possible.

The presence of axial torque due to gun-bore rifling makes the last

objective more difficult. As will be seen, however, a measure of the

balloting-energy growth can still be obtained. When the projectile is

not making contact with the bourrelet and if there were no axial torque,

Eq. (5-53) in Goldstein [10] shows that lot depends only on 8. Thus the

balloting energy immediately after impact would equal the balloting

energy immediately before the subsequent impact. With the presence of an

axial torque, whether 101 increases or decreases for subsequent equal

values of 0 may be examined by assuming the following relationsiip:

A A wl+ (32)
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where T is assumed constant. Here t is the elapsed time since immediately

after impact. The quantity a z/ in the value of a at the initial time.

Likewise Eq. (15) may be integrated in the same way and with some substi-

tutions between the resulting equation and Eq. (25), one can obtain that

* - .2
Six"* + j (fcos -d -t cos.)) (33)

Substituting Eq. (32) and (33) into Eq. (14), 'it may be obtained that

I-
*(fPCos-&-oo~

A~. N Wco -S -f ts COS 16) -O ~( -&dz c. ts o)

I S il-&-

Now consider when 0 = 0 at a later time (but before the next impact).

The first two terms on the right hand side may be added together to

obtain a negative quantity; similarly the last t,,o terms on the right hand

side may be added together to obtain a negative quantity. The sum of

the terms on the right hand side of the equation is always negative.

Compared to 00, 0(t) is seen to be a smaller quantity. The torque

then tends to align the axis of the projectile up with the gun-bore

axis and results in softened subsequent impacts. In this analysis axial

torque will be neglected. By neglecting the torque, an upper bound

value for balloting-energy growth rate will be sought and the analysis

becomes much simpler.
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As discussed earlier in the Introduction, Harris Walker obtained

the reaction forces at the rotating band in terms of the impact forces

on the bourrelet; he asserts that there is a time lag Te between the

application of the force n and the equal and opposite force nb to the shell.

Walker asserts that the time lag occurs because the stress wave must

travel from the bourrelet to the rotating band. Thus

W r-

The amount of time lag is important in determining the amount of balloting

energy added. Certainly, if the reaction impulse occurred immediately

before the next impact, the balloting energy could be decreased by the

overturning moment caused by friction. Additional insight may be obtained

from the following equation:

AT 4ijt7 (35)

Here AT is the increment of kinetic energy gained or lost by the shell due

to the torque impulse. The vector N is the torque applied about the
fi

center of the rotating band during the reaction impulse and is caused

by the presence of friction, wi is the angular velocity of the shell.

The reaction torque is assumed to occur after the impacting process. Here the

integrand is integrated over the duration of the torque. At bourrelet-bore

impact the corresponding impulse will be in a direction approximately

parallel to the line of nodes if the friction coefficient at the bourrelet

is small. According to a report of Gay [1] which gives a representative

motion of the figure-axis of a shell, the angle between w i and Nfi would

increase with time after impact so that the dot product of the two vectors
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would decrease. Furthermore, the magnitude of w. will be smaller with

smaller values of 0. Thus, the largest increment of energy given to

the total energy would occur if the reactive impulse occurred immediately

after impact of the bourrelet.

Guided by these arguments and seeking an upper bound for the

energy growth rate, a tentative hypothesis is made that the reaction

impulse occurs immediately after the impact impulse occurs. A rigid-

body model consistent with this time-lag hypothesis may be easily

constructed and treated. In this model, the bourrelet impacts against

the bore and the rotating band is assumed to be free of any constraining

influences. Immediately after this impact process, the reaction impulse

is applied to the rotating band and the bourrelet is assumed to be free

of any constraining influences. In this rigid-body approximation, the

constraint that the axis of rotation must be in the plane of the rotating

band determines the value of the reaction impulse.

It is convenient for the analysis of the model to express the

kinetic energy in coordinates about the center of mass of the projectile.

This expression would be

T~~(7K'-, "4m+~ k2(+ 4,2 Sjn2e.
-- 2 4_

~A( '.j cOS ) (36)

The subscript cg denotes the values for the center of mass for the projectile

and k is the transverse radius of gyration for the projectile. By the

assumptions used to seek an upper-bound value for balloting energy growth

and since the impact and reaction forces are of short duration, it is

sufficient for the analysis to use the impulsive equations of motion and
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focus upon the motions immediately after an impulse occurs. For impulsive

forces, it tan be shown that

) )( r (37)
-i-

Herepqi is the generalized impulsive force for the qi coordinate. The

first term on the left is for the value immediately after the impulsive

force has acted and the term with the subscript o is for the value

immediately before the force has acted.

From Eqs. (36) and (37), the transverse momentum given by the

bourrelet impact is

P11 (38)

Where P is the impact impulse. Additionally, using Eq. (21), the

impulsive torque about the center of gravity may be obtained:

L 'Ms 2.) -1
7 + r2./

The other impulsive equations of motion obtained from Eq. (36) are not

pertinent to the analysis. The initial conditions are given as

_ 4 too (40)

S' --(4 1 )

In addition, it is postulated that the coefficient of restitution is

knowit or can be estimated so that

6(42)
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where e is the coefficient of restitution. Immediately it is seen from

Eqs. (38, (40), and (42) that

?.~ rmhwe+I)(43)

Then substituting Eqs. (43) and (41) into Eq. (39), the following,

equation may be obtained:

--"kk (44)

where G =/ (t +7 21/M2 ) V2.

Now the reaction impulse process may be examined. From Eqs. (36) and

(37), the transverse momentum given by the reaction impulse at the rotating

band is

The impulsive torque is given as

Imk2 (46)

In addition, the condition that the rotating band must be the axis of

rotat ,n is given by

%.g = h z(47)

Eliminating (p n)b between Eqs. (45) and (46) and then using Eqs. (45) and

(47), one can obtain that

F h(b*-a'b) +~ k= j
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-(48)

The value of (p )b may be found by substituting Eqs. (42), (47) and '(48) into

Eq. (45):

~ ahW( I)L(J'GbM--k 29 (49)h(h+-v'b) + k2

Utilizing Eqs. (43) and (49), the following ratio can be obtained:

R ) (a- (50)
(h -f6+Gb) 4 Akz

With the rebound angular velocity 02 obtained, the effective'

coefficient of elasticity may be obtained. From Eq. (48) it is seen that

the effective coefficient of restitution is

£eh&G'-h - 4 (a-Gl ,)(e+') - k2 Jl

h(h+ ' 4- k (Sl)
The quantities A, h, k and b may be nondimensionalized by the quantity

2b to obtain these quantities in calibers. One then obtains that

ee-r £h2"+i4 #z/ (52)

From Eq. (52), it is seen that values for i1 and v of the order 0.05

will change the value of e little from the value of e if the friction
e e

coefficients were assumed to be zero. Assuming the friction coefficients to

be zero, a calculation of ee may be easily made for the 8" projectile

that was of interest to Walker. Here

a = 1.135 calibers, h = 0.71 cal.,

k = 1.066 cal., e = 0.7

and
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the twist is n = 20 cal/revolution. Plugging these values into Eq. (52),

it is obtained that e = - 0.165. Since e is negative, this means thate,

the resulting movement of the bourrelet is toward the bourrelet and not

away from the bourrelet as might be expected. Here, with this simple

model, the impacting process continues after the first reaction impulse.

Thus, the hypothesis that the impacting process is completed before the

reaction process is started is seen to be contradicted by the results

from a model suggested by the hypothesis. Friction effects can not

rescue the hypothesis from contradiction either since if p > v (as one

would expect it to be), then ee becomes a greater quantity in the

negative sense.

Certainly, these results do not rule out that part of the reaction

process occurs after the impacting process is completed. Thus, there

still exists the possibility that the presence of band friction might

increase the effective coefficient of restitution.

If the impact forces and reaction forces overlap in time, another

simple model is suggested. Let us consider that the impact and reaction

forces occur simultaneously. The impulsive Lagrange equations for this

case are

Mlo P, + (53)

In a similar way as before it is obtained that

171 ( -A k(
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,rnwH-e)t~a--GbM- k3(56)

The ratio of 11)b to p , R, is seen to be-that obtained earlier and given

by Eq. (50). The value of R does not depend on the details of the impact

and reaction processes; rather, it is determined only by the requirement

that rotation must occur around an axis in the plane of the rotating band.

Here the effective coefficient of restitution ee is simply e and no

increment in balloting energy can be obtained from the effects of either

band friction or bourrelet friction. Even though no possibility exists

for balloting energy amplification, it would be desirable to minimize

the magnitude of the impact impulse. Thus, according to Eq. (56), the

distance from rotating band to bourrelet a should be as large as possible.

It appears from the above results that ee might possibly be less

than e for overlapping impact and reaction forces. The present author

cannot prove this, however; instead an upper bound value for ee will be

obtained. Since large balloting energies may be possible according to

some evidence, it is an attempt to explore these possibilities even though

the dynamics of the motion may be complicated. The maximum (P))b

that might occur is given by Eq. (S6), which is valid for simultaneous

impulses. Now suppose that by some mechanism unknown to the author, the

friction force were applied at the rotating band after the impact and

reaction processes had occurred. The value of e would then be greater

than e. The expression for the maximum angular momentum due to this

application of frictional force on the rotating band is

12(57)
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where it is assumed that v : 0 in the expression for (pndb

The expression for e is

e

2 2

Substituting Eqs. (56) and (57) into Eq. (58) and since I = m (h2 k2)

a (H+e)G R9)

where R is expressed by Eq. (50) and a'is the value of a in calibers.

First, consider what e would be for accepted parameter values.
e

If it is assumed that e = 0.7, P = 0.2 from the results of Bowden, v = 0.05

and the values of a/, h/, and k are as given earlier for the 8" projectile,

it can be calculated that e = 0.75. If Walker's values of P = 0.5 ande

v = 0.55 are used, ee = 1.59. The balloting-energy growth would then

be rapid as Walker predicted.

With the assumptions made in this paper, an upper bound value for

energy growth rate can be obtained in terms of e e. Neglecting torque,

after n impacts 0 would be

(60)

Now treating n as a continuovs variable, n can be expressed as n = 0/(2A)

where A = c/a. The quantity c is the clearance between the bore and

bourrelet when the shell is centered in the bore. Substituting the

expression for n into Eq. (60) and integrating, the following expression
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can be obtained:

4 ee (61)

i 1e2 ,
Since the balloting energy E is C =y 2 manipulation of Eqs. (60), (61)

and the expression for n show that

Co/L (,E0 j tI 2  (62)

where

Equation (62) is the expression that Walker also obtained although the

expression for y obtained here is completely different than what Walker

obtained for y.

Summary and Conclusions

Since errors were discovered in Walker's report concerning the

balloting motion of a projectile in-bore, it was decided to attempt a

correct development but using the same general approach. That is the

projectile is treated primarily as a rigid body. The elastic character

of the projectile was taken into account by Walker by assuming a time

lag between the impact forces at the bourrelet and the reaction forces

at the rotating band. Initially, a time lag between the application

of the two impulses was hypothesized in this paper. To avoid numerical

integration of the differential equations of motion and obtain an upper

bound to energy growth rate, it is postulated that the reaction forces

occur immediately after the impact forces.
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The impulsive Lagrange equations of motion may then be used.

Determination of the reaction impulsive force and the final motion is

obtained by the requirement that the projectile must rotate about an

axis in the plane of the rotating band. For the 8" XM201 shell and many

other shells, the resulting calculations show that the final motion is

toward the bore surface and not away from the bore surface as one might

expect. Thus a model suggested by the hypothesis contradicts the

hypothesis since the bourrelet contacts the bore after the reaction

impulse. From these results, it appears that the impact and i-eaction

forces are occurring with considerable overlap; i.e., part of the

impact forces are occurring when the reaction forces are occurring.

These results suggest investigating a projectile having impact

and reaction impulses occurring simultaneously. It is interesting to

examine the resulting expression for the impact impulse, Eq. (55), more

closely for the possibility of obtaining large impact impulses. For

conventionally designed projectiles the first term of the denominator

is much larger than the magnitude of the second term. The second term

will be negative since the band-friction coefficient might be expected

to be of the order 0.05 while the bourrelet friction coefficient might

be expected to be of order 0.2. Now, suppose by some accident or

design flow, the effective value of a might be decreased considerably,

even to the point that the magnitude of the first term would be

comparable to the magnitude of the second term. Thus. the value of

the impact impulse could possibly become large enough to damage the

gun-bore surface even though the balloting energy might be small.



With these dynamic models, it is still not clear if balloting energy

amplification could occur. However, it does appear that the simultaneous

impulse model would give the maximum reaction impulse for a given balloting

energy. An upper-bound value for the effective coefficient of restitution

should then be obtained by utilizing the simultaneous impulse model

together with the assumption that the resultant torque impulse due to

band friction is applied immediately after the reaction impulse. If

the more correct values of bore friction are used, it appears that the

effective coefficient of restitution would be only about 0.05 greater

than the coefficient of elasticity. The effective coefficient of

restitution will then be less than one. If, however, Walker's values

for friction coefficients were used, the effective coefficient of resti-

tution would be about 1.6. Thus, it appears that for conventionally

designed projectiles, the balloting energy will only decrease and a

more detailed analysis of balloting motion is unnecessary. An upper

bound for the balloting energy growth may easily be obtained in terms

of the effective coefficient of restitution. Since the presence of

axial torque causes the subsequent impacts to be less and consideration

of axial torque would require numerical techniques, the ignoration

of this torque will give an upper bound value for balloting-energy

growth.

The main conclusion that the balloting-energy will only decrease

from its initial value depends heavily on the values utilized for the

coefficient of bore friction. These values are known approximately

from experiment and it is asserted with some confidence that Walker's [5]

values for friction coefficients are in error by perhaps an order of

magnitude.
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ABSTRACT

The rising interest in low dispersion, burst fire guns

for anti-armor applications has generated a class of gun barrel design

which requires a better analytical prediction basis for transverse

motion than a conventional simple contilever model. Inclusion of

the effects due to inertia forces of barrel motion, Bourdon load, and

travelling projectile load, etc., in the analytical basis appears

necessary for useful prediction. Recently, a general model encompassing

such effects was formulated [1]. However, no rigorous full solution

has yet been obtained.

One of the significant analytical obstacles for this class

of barrel design is the multiple time varying supports due to barrel

motion. In this paper, the transverse dynamic response of a barrel

with a displacement norm for convergence, is established for the

governing equations.

A numerical example is given with a 60mm gun barrel having

three supports. Transverse and angular deflections at the muzzle

end during a single shot cycle are shown. The results indicate

possible extended applications for burst fire and a bal:rel with

discontinuous (gap/pad) supports.
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1. Introduction

Conventionally, gun barrel analysis is done under the assumption

that the barrel is either axially fixed or cantilevered at one end. In

some recent designs for low despersion guns, the barrel is supported

transversely. Very small gaps exist between the barrel and the supports,

and the barrel moves with respect to the supports during firing. A

model of this complex system has not yet been well formulated. However,

the beam equation for transverse motion of a cantilevered barrel appears

in Appendix B of WVT-TR-75015tl. This rather general model includes the

effects of barrel weight, inertia force of the barrel motion, Bourdon

load, and projectile weight and acceleration force. In this paper, the

governing equations of the model are modified and utilized to analyze

the transverse dynamic response of a gun barrel with three supports, but

without gaps between the supports and the barrel.

A combination of finite difference, modal analysis and. Picard's

iteration scheme is adopted as the basis for the method of solution.

Modal analysis is done in a short time interval considering the location

of barrel supports fixed. The iteration scheme is employed to cope with

forcing functions which are response dependent. By revising the modes of

the barrel and considering the terminal and initial conditions of the

problem, dynamic response is obtained in the next short period of time.

Continuing in this way, a successive modal analysis in an iterative man-

ner is established.
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A numerical example with a 60mm gun barrel is considered. As a

specific interest for precision, the transverse and angular deflections

at the muzzle end during a single shot firing are shown. The results

appear to indicate reasonable physical trends and magnitudes.

The accuracy of the analysis is, in general, dependent on the time

intervals and the associated axial movement. Initial estimate of time-

space deflection is the prime factor for convergence. A norm for con-

vergence based on deflection is found to be a good estimator of the

solution,

2. Problem Formulation

Referring to Figure 1, the equations of the transverse motion of the

barrel are [1] :
2 2 -.

(Ely,,),,+pA(x)y:-pgA(x)cosa-p(x,t)a4V'- y"+2Vy' +y+'+cosalm p 6( -x)

-Y'pgA(x)(Xo(t)/g-sina)+Ix Y pgA(i)(Xo(t)/g-sina)dx_

+P1 6(n-x)+P 2 6(n+r-x) (1)

y(O,t)y' (Ot)=O

Y(n't)=y(n+4't)=O() (2)

y(x,O)=y o

where E = modulus of elasticity

I = moment of inertia of the barrel cross-section

p = mass density of the barrel
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FIGURE 1 Barrel with Three Supports
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A(x) = cross-sectional area of the barrel

p(x,t) = bore pressure

a = inner radius

V = velocity of the projectile

g = gravitational acceleration

= inclined angle of the barrel axis

mp = projectile mass

= Dirac delta function

= projectile travel distance

X (t) = recoil and counter-recoil acceleration

i total lenght of the barrel

P1  reaction of the second support

n = recoil and counter-recoil distance

P2 = reaction of the third support

distance between the last two supports

In the right-hand side of Equation (1), the first term is gravita-

tional force; the second term is Bourdon 
load; the third term is projec-

tile inertia and gravitational force; the fourth and the fifth terms

are recoil and counter-recoil inertia forces; and the last two terms

are reactions of the supports.

Bore pressure distribution p(x,t) is obtained 
by assuming that the

charge is uniformly distributed along the 
barrel and its velocity is

zero at the breech and increases linearly to the velocity of the

projectile base. Other factor (e.g., friction) are neglected, so

from gas dynamics:
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p(x,t) :p l mr +" M 2

2

where p is the breech pressure and-m c is the weight of the charge.

3. Method of Solution

Since the recoil and counter-recoil distance n is a function of time,

Equations (1) and (2) obviously defy a simple analytical solution. If

one assumes, however, that n is constant, Equations (1) and (2) can be

readily solved by finite difference, modal analysis, or any other suitable

methods. It follows that for a short period of time one may attempt to

seek an approximate numerical solution by considering n constant. The

solution over the whole time interval of concern could be obtained by

updating- the value of n through successive short time intervals. Futher-

more, for a short time interval the barrel modal functions can be treated

as fixed. Using several modal functions to expand the solution in the

interval would then result in an approximate solution.

A difficulty arises in the right hand side of Equation (1), which

involves the unknown transverse loads and must be calculated before the

usual modal method can be applied. To overcome this, one may resort to

an iterative method. First, one assumes the barrel is under the action

of gravitational force, which is a multiple (starting weight factor) of

the first term of the right-hand side of Equation (1). The solution of

this load gives an amount of deflection, which is used to calculate

"transverse load" for the next iteration. This is essentially an adopta-
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tion of the generalized Picard's method. Use of modal analysis in such

a manner with a finite elements model has two advantages. It avoids

calculating the reactions P1 and P2 and it takes account of any attached

masses,

Convergence of the iterative process can be determined by considering

a displacement norm:

1I1Y1= f)fo (Yk+I-Yk)dtdX y +idtdx (4)

where AT is the time interval considered and the subscrips of y indicate

iteration numbers. If Ijyjl is less than some small number then itera-

tion is terminated. The solution at t=AT is taken as the initial con-

ditions for analysis in the next time interval.

There is another difficulty at the support points. Deflections at

support points which are zero in the present time interval are not

necessarily zero in the next time interval and vice versa. To over-

come this obstacle, one may use revised modal functions to expand the

terminal conditions (solutions at t=AT of the current time interval) as

the initi.l conditions for the next time interval. The connection

between these two time intervals would then smooth.

4. Example

For a numerical example, a 60m barrel with given material and

geometric data at initial position in Figure 2 is considered. These

data simulate an experimental test bed of the Army Medium Caliber Anti-

armor Automatic Cannon Program. Breech pressure history, projecitle
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travel velocity and distance, and recoil and counter recoil velocities

and distances are shown in Figures 3, 4, and 5. The distance i was

kept constant throughout the analysis. The barrel has been divided into

51 finite elements for analysis. The analysis lasted to a complete

stroke of one fire. It started with zero velocity of the barrel and

deflection due to dead weight of the barrel. Analysis proceeded with

time intervals associated with barrel travel distances at 1.2 and 2.4

inches. The projectile passed through the barrel in the first time

interval from 0 to 0.0070 seconds.

The first six frequencies at several recoil distances are listed in

Table 1. The successive time intervals, time grid points used in the

intervals, iteration number of each time interval, and IlYll of the

initial and final iterations are listed in Table 2. Time-deflection of

the muzzle end is shown in Figures 6.1-6.3. The muzzle end oscillates

between -0.029 and +0.022 inches at the final stage oF counter-recoil.

The deflection of the muzzle end at the moment that projecitle leaves

the barrel is y=-0.0058 inches and y'=-0.00014 radians. Total computing

time for this problem is 5 minutes with a double precision computing

area of 300 K bytes on an IBM 360/65 computer.

5. Conclusions

The results in Figures 6.1-6.3 indicate reasonable physical responses

at the muzzle end during the firing cycle. The approximate method utilized,

therefore, appears to be useful in the analysis of transverse motion of a gun

barrel on multiple time varying supports with effects due to gravitational

force, Bourdon load, projectile and charge effects, and recoil and counter

recoil accelerations.
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Table 2 shows the effects of the projectile inertia and the charge

pressure in the relevant time interval. The effect of the recoil inertia

is small in each time interval, but the recoil distances accumulate the

effect. Because of geometric changes, the recoil effect should be shown

in successive time intervals.

The method shows its computational effectiveness in the example. It

needs very small amount of computing area because space dimension is

shortened by modal analysi and time dimension is repeatedly used in the

successive time intervals. Moreover, a solution fr a burst fire

may be obtained by simply applying the method for longer time period

without exorbitant computing time.

It appears reasonable to speculate that the method may be extended

further to determine the combined effects of the distance n in Figure 1

and the supporting gaps upon the transverse dynamic response of a gun

barrel at the muzzle end.
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TABLE 1 - Recoil Distances and the Associated Tube Frequencies

n fl f2 f3 f4 f5 f6
(in) (Hz) (Hz) (Hz) (Hz) (Hz) (H.z

101.5 51.1 98.4 266 334 467 585
102.7 53.2 96.3 261 341 471 574
103.9 55.5 94.2 256 347 478 564-
105.1 57.9 92.3 252 352 486 557
IU6.3 60.5 90.5 247 357 494 556
107.5 63.2 88.8 242 361 497 562
108.7 66.1 87.3 237 363 495 578
109.9 69.0 86.1 232 366 490 601
111.1 71.8 85.5 228 367 484 628
112.3 73.9 85.9 223 368 477 658
113.5 74.9 88.0 219 368 471 688
114.7 74.7 91.6 215 368 465 705
115.9 74.0 96.4 211 367 459 701
117.1 73.0 102 207 366 455 690
118.3 71.9 108 203 364 450 677
119.5 70.7 115 200 362 447 665
120.7 69.6 123 197 359 444 653
121.9 68.4 132 194 356 443 641
123.1 67.3 141 192 352 442 629
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TABLE 2 - Time Interval Information

No. of
Time Time Grid Starting Weight No. of Final ||viI
(sec) Points Factor Iterations Initial Ijjy I_ (in I0" )

0.0110, 23 1 5 1 8.424
0.0180 15 1 2 1 8.125
0.0240 13 1 2 1 3.212
0.0300 13 1 2 1 0.531
0.0370 15 1 2 1 2.446
0.0430 13 1 2 1 2.978
0.0500 15 1 2 I 2.134
0.0570 15 1 2 1 5.325
0.0645 16 1 2 1 2.210
0.0725 17 1 2 1 5.660
0.0810 18 1 2 1 5.198
0.0900 19 1 2 1 3.899
0.1000 21 1 2 1 5.968
0.1110 23 1 2 1 6.616
0.1235 26 1 2 1 7.027
0.1390 32 1 2 1 7.165
0.1600 43 1 2 1 7.633
0.1990 40 1 3 1 0.022
0.2775 53 1 3 1 0.016
0.3345 58 1 2 1 6.442
0.3805 47 1 2 1 3.027

0.4235 44 1 2 1 0.640
0.4675 45 1 2 1 1.361
0.5165 50 1 2 1 3.316
0.5785 32 1 2 1 3.091
0.6625 43 1 2 1 3.573
0.8165 45 1 2 1 4.238
1.0055 43 1 2 1 1.530
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I. Introduction

Fin-stabilized projectiles are widely employed as anti-armor, kinetic

energy rounds. Since sabots are required to launch these projectiles from

guns, a unique set of problems is encountered in attempting to design a

system with acceptable accuracy. Within the gun, the fins extend aft of

the sabot and may interact with the-propellant bed or gases and with the

gun tube. Since the projectile is manufactured from a dense material,

transverse vibration within the less dense and segmented sabot may occur

in response to projectile or gun tube asymmetry. At ejection from the

launcher, elastic decompression of the sabot, centrifugal, and gas dynamic

loadings combine to rupture retaining rings and implement sabot discard.

Asymmetries in the discard process may produce transverse loadings upon

the projectile and resultant trajectory dispersion. This paper presents the

results of an experimental study of the sabot discard from a 60mm fin-

stabilized projectile. Particular attention is given to aerodynamic

interactions between the discarding sabot components and the sub-projectile.

While aerodynamic interference associated with components of aircraft,

e.g., wing-body, airframe-propulsion, and airframe-stores, has been exten-

sively investigated l
, similar interference associated with sabot discard

from high speed projectiles has received limited attention2 -4. Gallagher2

presents an experimental investigation of projectile deviation from the
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desired aim point due to muzzle blast, sabot discard,. and projectile

asymmetry. Since he neglects any contribution due gun tube/projectile

interaction, the value he assigns to deviation due to muzzle blast is

5,6
orders of magnitude greater than that found in more recent investigations

These show that muzzle blast does not contribute significantly to tra-

jectory deviation and that the actual source lies with gun tube or sabot

discard interactions. Gallagher notes that the sabot components open

symmetrically, but the center of gravity of the grouped components does

not lie along the axis of the projectile. He assumes that there will be

a momentum exchange between the sabot and projectile in relation to their

masses and the magnitude of the center of gravity separation. However,

due to the limitations of his apparatus, Gallagher could not define the

magnitude of this deviation which is generated by elastic rebound at

muzzle ejection. Gallagher made no attempt to investigate the effects

of aerodynamic interactions.

Conn3 investigates the effect of aerodynamic interference between

sabots and projectiles fired from a light gas gun. His measurements

show that a conical projectile launched with a two-segment sabot has

periods of pitch and yaw which are dependent upon the orientation of the

sabot plane of separation. lie uses oblique shock and Newtonian flow

theory to analyze the pressure distribution on a cone at arbitrary

attitude relative to a symmetrically discarded, two-segment sabot. The

results of his analysis show that aerodynamic interference differentially

increases the restoring moments acting on the cone, thereby shortening

the periods of oscillation. He notes that by intercepting the sabot

components at the point of maximum yaw, the free flight yaw levels are
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minimized.

Glauz4 uses oblique shock theory to analyze the side forces and

moments generated on a fin-stabilized projectile due to. a single sabot

component flying in close proximity, lie assumes that when it intercepts

the projectile, the shock wave from the sabot is planar, does not reflect

at the projectile, and is not influenced by the projectile viscous or

inviscid flow field. In a sample calculation, Glauz predicts a significant

alteration of the trajectory of a small caliber flechette by this type

discard process; however, his calculated value of discard induced angular

7
velocity is an order of magnitude higher than actually measured . This

disagreement is due to both the simplistic nature of the model -and the

complex, mutually interacting flows established during discard.

The present investigation was conducted to provide detailed information

on the aerodynamic interference between sabot components and projectiles

for actual kinetic energy round configurations. The results of measure-

ments of sabot and projectile motion from the muzzle, through sabot discard,

and into free flight are presented. Observed variations in projectile

angular motion is shown to correlate with measured sabot discard asymmetry.

A simple model of the interacting flow is used to estimate the projectile

behavior. Like previous models, the agreement is not exact; however, the

results do support the interpretation as to the cause of anomalous

projectile angular motion.

II. Experimental Apparatus and Test Procedure

The test vehicle is a fin-stabilized projectile encapsulated in a

four seg:nent sabot. The round is fired from a 60mm gun with a twist of
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rifling of one turn in 200 calibers. The laumch velocity is 1310 m/s. The

projectile and test coordinate system are illustrated in Figure 1.

Data was taken of the projectile launch and flight using a variety

of techniques, Figure 2. Near muzzle motion was monitored at a series

of six, orthogonal X-ray stations located at five foot intervals. Five

smear cameras, set at fifteen foot intervals, provided coverage of the

final, aerodynamic discard of sabot components. Downrange motion of the

projectile was measured in the BRL Transonic Range,

To permit quantitative reduction of the X-ray 'data, an in-situ

calibration procedure was employed. The technique was straightforward;

consisting of stringing a calibrated steel wire along the line of fire,

taking X-ray photographs of the wire just prior to the shot, removing

the wire, and firing the test. In this manner, a double exposure is

obtained at each X-ray station, Figure 3. On this X-ray photograph,

the wire, with a known spatial location, and the projectile, whose properties

we wish to measure, are clearly visible. The reduction of the data on

the X-ray is direct for objects located near the calibration wire, e.g.,

the projectile. The determination of the location and orientation of

objects distant from the wire requires correction for parallax.

III. Experimental Results

The measured yawing motion of the projectile gives the clearest

indication of the magnitude of aerodynamic interference. A plot of the

projectile angles of attack and side slip for five typical firings is

presented in Figure 4. Each data point is a separate measurement

obtained at an orthogonal X-ray station. These stations are located
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at approximately five foot intervals with the first station located

two feet forward of the gun muzzle. Thus, this figure depicts the

variation in projectile attitude as it travels the first 27 feet down-

range. The period of yaw (interval between successive minima) for

this projectile is 130 feet. If it were assumed that the muzzle

represented the initial minimum yaw point and that the round was in free

flight, its yaw should increase monotonically to a maximum at 65 feet

from the muzzle and then decay to a second minimum at 130 feet. For

three of the rounds in Figure 4, this type of yaw motion may be occurring;

however, two of the rounds clearly do not exhibit this monotonically

increasing behavior.

Rounds 4 and 5 are launched with an angular motion in a given

direction which reaches a maximum level at twenty feet from the muzzle.

This location is well short of the free flight half period of 65 feet.

To confirm the validity of this yawing motion, the X-ray data may be

compared with the Transonic Range data, Figure 5. The range measurements

cover 680 feet of the projectile trajectory commencing 130 feet from

the muzzle. The projectile angular motion, recorded at orthogonal spark

shadowgraph station, is fit to the equation of a damped epicycle using

a least squares procedure. The comparison between the X-ray measurements

and the range data extrapolated back to the muzzle is reasonable. The

first plot of Figure 5 is the comparison for a well behaved launch,

Round 3. The X-ray data shows similar trends to the Transonic Range

data. The second plot is the comparison for Round S. While the initial

motion would not correspond to the extrapolation, the motion measured in
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the final X-ray stations does agree with range data. This corroborates

what might otherwise be interpreted as anomalous behavior in the X-ray

measurements.

When the location of the various sabot components with respect to

the projectile is examined, the projectile angular motion may be

correlated with discard asymmetry, Figure 6. This is a set of vertical

X-ray plates taken for Round 5. The view is that of an observer situated

above the flight path and watching the projectile fly downrange beneath

him. The X-ray photographs reveal an obvious asymmetry in the geometry

of the sabot petals at the final two stations. The petal on the left

is closer to the projectile than is the right hand petal. The shock

wave from the nearer petal impinges on the fins generating an overpressure

and crossflow which would push the fins to the right and the nose to

the left (the direction of increasing sideslip). This type aerodynamic

interference loading and response is in agreement with the measured

projectile motion, Figure 4.

The angular -acceleration induced by the aerodynamic interference

is substantial, and the -resulting angular velocity imparted to the

projectile is equivalent in magnitude to the rates observed immediately

following separation from the muzzle. For Rounds 4 and 5, aerodynamic

interference produced loadings in opposition to the direction of launch

angular velocity. This could decrease the level of free flight yaw;

however, if the interference loads were in the same sense as the launch

angular rate, yaw amplification would occur. Round 3 seems to show

a growth in angular velocity during the discard process, Figure 4.
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Such amplification is undesirable. To control trajectory deviation

and- dispersion, the designer wishes to reduce aerodynamic jump which is

directly proportional to the initial free flight angular velocity. These

results indicate an additional area of concern. To decrease the adverse

impact of aerodynamic interference, it is necessary to either control

discard asymmetry or increase the rate of sabot separation. Since the

source of the asymmetry is not immediately obvious, the latter course

of action may be more advisable.

IV. Analysis

To determine if the measured angular accelerations could be
4

generated by aerodynamic loading, a simple analysis similar to that of Glauz

is performed. For Round 5, it is observed in Figure 6 that the nearest

sabot component is at an angle of approximately 400 with respect to the

projectile axis. Assuming the sabot component to be a two-dimensional

body and reducing the angle to 380 (to give an attached shock at M = 3.91),

the flow behind the oblique shock generated by this component may be

computed. If the shock impinges on the projectile fin surfaces, the

reflected pressure level may be computed. For this type interference,

2the projectile would experience an angular acceleration of 0.15 deg/ft

2The measured angular acceleration for Round S is 0.022 deg/ft ; thus, the

observed motion is in agreement with that which might be generated by

aerodynamic interference.

V. Summary and Conclusions

An experimental program is presented which defines the sabot discard

process of a 60mm, fin-stabilized projectile. The data indicate that
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strong aerodynamic interference occurs between the discarding sabot
components and the projectile. A simple analysis of the magnitude of
potential aerodynamic loadings shows that the observed motion of the
projectile is well within the upper bound of theory. Since the
aerodynamic interaction can adversely affect the trajectory -and
dispersion of the round, it is advisable to provide for rapid sabot

discard thereby decreasing the duration of interference loadings.
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ABSTRACT

A state space method of optimal design of dynamic systems subjected to

transient loads is developed and applied. In contrast to the usual nonlinear

programming approach of discretizing the time interval and constructing a

high dimension nonlinear programming problem, a state space approach is

employed which develops the sensitivity analysis and optimization algorithm

in continuous state space, resorting to discretization only for efficient

numerical integration of differential equations. Comparison of the state

space method with the nonlinear programming method is carried out for a

nonlinear test problem, in which the state space method requires only one-

tenth the computing time reported for the nonlinear programming approach.

The method is further illustrated through solution of a five degree of free-

dom vehicle dynamic response problem, involving multiple input and multiple

constraints. Application of the method to weapon dynamics with intermittent

motion and to gun tube stiffening optimization for precision are presented

in other paperc of these proceedings.
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I. INTRODUCTION

With the advent of affordable electro-optical devices, digital computers,

and precision controls; there is potential on the horizon for extremely pre-

cise gun weapons. Such systems are typified by high recoil momentum, inter-

mediate rate of fire, and by long slender tubes. Rational design techniques

for recoil control, automatic mechanisms, and interaction of the various

mounting and isolation subsystems are needed if one is to achieve the full

potential for precision. The very sensitive nature of dynamic response of

such systems precludes separate design of the recoil mechanism, mount, and

the tube. It is imperative that parametric design techniques be employed,

which can account for subsystem interaction and overall system precision,

as a function of excitations that are characteristic of each of the sub-

systems. A practical parametric desigi, technique, therefore, must include

sensitivity analysis of the mathematical model of each interacting subsystem.

The existing literature on dynamic effects on precision is reviewed in

[1] and other papers of this proceedings, so it will not be repeated here.

It suffices to note that analysis capability today is considerably ahead of

state-of-art design methodology, the, subject to which this paper and [2,3)

are addressed. Prior to entering into a technical discussion of the state

space dynamic synthesis problem, an important class of weapon design prob-

lems involving intermittent motion should be noted. Looseness in supports,

the basic intermittent nature of weapon mechanisms, and moving supports

render the weapon dynamics problem highly nonlinear [1,4,5]. An extension

of the state space method for synthesis of systems with intermittent motion

is presented in [6].
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The field of mechanical syste: optimization for dynamic response was

advanced significantly in the late 1960's, through-application of linear

and nonlinear programming methods. A comprehensive summary of this work

may be found in the monograph by Sevin and Pilkey [7] and the paper by

Karnopp [8]. More recent applications of these programming techniques may

be found in [9,10]. Optimal control approaches are suggested in [8] and [11],

but no numerical methods are developed or applications presented.

It is important to note that all the nonlinear programming methods

presented in [7,9,10] involve placing a finite grid on the time interval and

defining the response variables on the time grid as variables of the non-

linear programming problem. The result is a problem of very high dimension.

It is universally observed [7,9,10] that the resulting problem requires

copious amounts of computer time and limits the size of engineering problems

that can be treated.

State space methods of optimization in the controls literature have

been developed to a high degree and applied to numerous problems of optimal

control, e.g. Bryson [12,13]. These techniques have not, however, been fully

exploited for mechanical design optimization. Applications to structures

and to some elementary dynamics problems have been treated by the writers [14].

This paper employs these methods and the related gradient methods of Miele [15]

for efficient solution of transient dynamic response design problems.

In both the state space approach presented herein and the nonlinear pro-

gramming approach of [7,9,10], one must employ a discretization of the problem

for digital computation. The fundamental difference between the nonlinear
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programming and state space methods is the point in the algorithm at which

discretization is employed. In the state space method, one develops an

optimization algorithm that operates in the design parameter space and only

discretizes to carry out numerical integration of the differential equations

of motion and certain adjoint differential equations. The trade-off is,

thus, high dimensionality in the discretized nonlinear programming problem

versus numerical integration of differential equations in the state variable

formulation. Following the dvelopment of the state space algorithm, example

problems are solved and compared with results obtained with the nonlinear

programming method.

II. A DYNAMIC OPTIMAL DESIGN PROBLEM

To be more specific, dynamic systems considered here consist of a col-

lection of rigid bodies that are connected by combinations of springs and

dampers. The system is described by a vector of-design parameters

b = [bl,...,bm] T, where the bi include spring stiffness, damping coefficient,

element mass, or physical dimensions of the system. The design problem has

as its objective the choice of this design parameter vector so that the

mechanical system satisfies performance constraints, under given excitation,

and is optimum in some sense.

In order to impose dynamic performance constraints, a state variable

vector (generalized displacement and velocity coordinates)

Z(t) [Z(t),...,z (t)]T is required to describe the system dynamics. The

differential equations of motion are written in the form
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P(b)z = F(t,z,b) , 0 < t< T J (1)

z(0) z5

where z denotes the time derivative of the state variable, P(b) is an

n x n matrix whose elements depend on the design parameters, F(t,z,b) is an

n x I matrix of forcing functions and support reactions, and z0 is a vector

of given initial conditions. It should be noted that these equations are

in general nonlinear.

The specific class of problems treated here concerns minimization of

extreme dynamic response, subject to performance constraints -that must hold

over the entire time interval of concern, [0,T]. The cost function 0 that

is to be minimized is written as

0= max f0(t,z(t),b) • (2)t [0,'r]

Cost functions of this form arise in precision instruments and weapon

system design. In case f0 does not depend on t or z(t), the max-value

operation is not required and a much simpler problem results.

Just as the cost function may be taken as the extreme value of a mea-

sure of dynamic response, constraints may be written in a similar form.

Such extreme value performance constraints may be written in the form

= max fi(t,z(t),b) - 01 < 0 , i = l,...,k . (3)
tc[0,]

Constraints of this form arise as excursion limits on the motion of mechani-

cal components and as stress limits in structural members. In addition to

these dynamic performance constraints, explicit bounds must generally be

placed on allowable values of the design parameters. That is,
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b < b < b i = i, ,m (4)

L adU
where b and b are lower and upper limits on the design parameters.

It may be noted that pointwise constraints 4(t,z,(t),b) - 0< 0,

for all 0 < t < T, may be rewritten in the form of Eq. (3). That is,

max 4(t,z(t),b) - 0 < 0. In addition to the extreme value functionals
tc[O,T]
in Eqs. (2) and (3), functionals of the form

h(t,z,b)dt (5)

often arise. Such cost and constraint functionals may be used to represent

a cumulative measure of performance over the time interval [0,T], and are

readily incorporated into the state space formulation of the design problem.

III. REVIEW OF THE NONLINEAR PROGRAMMING METHOD

Discretization of the problem of Section II can be carried out by

fixing a time grid on the interval [0,T], 0 = t0 < ti < t = T. One then
~i

defines z = z(t i), i = 0,...,s and uses some form of finite difference

technique to approximate the dynamic Eqs. (1), e.g.

iP(b) (i) (zi - zi-l) = F(ti,z 9b) , i = l,...,s , (6)
h i

where z is given by the initial conditions and h1  t i - ti 1 .

One may now define a parameter d by the inequalities

fo(t,z i,b) - d < 0 , i O,l,...,s , (7)
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and replace the cost function of Eq. (2) by

0= d (8)

Finally, one may replace the constraints of Eq. (3) in the discretized

formulation by

j = ,.k

f (ti9zi,b) - <0 (9)
j i' i = 0,1,... ,S

In addition, one has the design parameter constraints of Eq. (4).

One may now solve the nonlinear programming problem of minimizing the

cost function of Eq. (8), subject to the constraints of Eqs. (6), (7), (9),

and (4). However, with the dimension of z being n, there are ns + m + 1

variables and (n + k + l)s + k + 2m + 1 constraints. Even for a single

degree of freedom vibration isolator with n = 2, m = 2, k = 2, and only

s = 50, there are 103 variables and 257 constraints. For more realistic

mechanical systems with transient response, there will be an order of mag-

nitude more variables and constraints. As noted in [7,9,10] problems of

such dimension require excessive amounts of computer time. As a result, the

examples solved in[ 7 ,9,10] involve only one or two degrees of freedom and

require in excess of one minute of computer time on third generation

computers (IBM 360-65, CDC 6400, and Univac 1108).

IV. A STATE SPACE OPTIMIZATION METHOD

The formulation of the dynamic optimization problem of Section II is

troublesome, from an analytical point of view, because of the difficulty in
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treating the max-value functions of Eqs. (2) and (3). In this section, the

problem is reformulated so that integrals replace the max-value functions.

A state space sensitivity analysis method and an optimization algorithm are

then presented.

First, following the idea of Eq. (7), one defines an upper bound,

bm+l , on f0 according to the inequality.

f (tz(t),b) - b < 0 , 0 < t < T . (10)

The cost function that is to be minimized can, thus be taken as

J b . (11)

Next, note that for a continuous function q(t), one may replace the inequality

n(t) < 0, 0 < t < T, by the "equivalent" integral constraint

O (lt) 2 dt = 0 (12)

where

n(t) , (t) > 0

(t)) = .(13)

0 n(t) < 0

It is important to note that, even through d/dt (n(t)) is discontinuous at

points where the graph of n(t) intersects and absissa, d/dten(t))
2

= 2(n(t)) dq(t)/dt is continuous there if dn/dt is continuous.

One may now replace the inequality constraints of Eqs. (3) and (10) by

0 f f0(t,z,b) - bm+l2 dt 0 (14)
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and

i - f(t,z,b) _ 0i)2 dt = 0 , i = l,...,k . (15)

Thus, the dynamic optimal design problem is reduced to the "equivalent"

problem of minimizing the cost function of Eq. (11), subject to the con-

straints of Eqs. (4), (14), and (15). This form of the problem miay

now be treated by known optimization methods [13,14,15].

Before presenting the algorithm, another method of reducing the max-value

functions to integral form may be noted. Presuming f0 (x,z,b) is continuous

and greater than zero, which can be achieved by adding a fixed constant, then

it is known [10,11,12] that

max f0 (t,z(t),b) = lim [f f0 (t,z,b)]P d . (16)
te[O,C] p- I

This fact suggests replacing the constraints of Eq. (3) by

I [fi(t,z,b)]P dt -m -< 0 1 ,...,k (17)

and the cost function of Eq. (2) by

- (T
= J p f (f0 (t,z,b))P dt (18)

One could then minimize J subject to constraints of Eqs. (1), (4), and

(17) and then increase p and re-solve, until a limiting approximation is

reached. This method has been justified on theoretical grounds in [11] and
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applied in [16] and in references cited in [7]. A comparative study [19]

of this approach and the "equivalent" formulation above showed that:

(a) the constraint formulation of Eq. (17) is inaccurate, for practical

values of p, (b) use of the equivalent constraints of Eq. (15) and the cost

functions of Eqs. (11) and (18) yields equivalent results, and (c) convergence

properties and computer time required favor the "equivalent" formulation.

The key to solving any integral form of the design problem is to calcu-

late derivatives of the constraint integrals with respect to the design vari-

ables, using the state equation (1) to eliminate the dependence on z. To do

this, one may introduce an adjoint variable X(t) through the identity

f TT[p - F(t,z,b)]dt = 0 (19)

Perturbing b by an amount 6b results in a change 6z in z. If 6b is small,

one can expand the left side of Eq. (19), to first order, as

T(p6 IF 6z+ (Pz) b 6b (20)

-T( 6z+ b- bdt=0,(20)I6b b-Ls dt0

where

~< [a - jnxn and nxm

Integrating the first term in Eq. (20) by parts, noting that because of the

initial condition of Eq. (1) Sz(0) = 0 and requiring that X(T) = 0, one has

the identity

f T T )T Cit + XT
- PC +6( %  z dt =P&) + 6b dt (21).
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One may now write first-order approximations for Eqs. (14) and (15), as

iT

0+ 0 JO f0- b

+ m +, a b - 6z+l dt =0 (22)

and

+ JoL" fi - ii1)

+ 2 f - 0,) (f z + 6 b dt 0 , i=1,...,k (23)

The identity of Eq. (21) may now be employed to eliminate explicit depen-

dence of Eq. (22) and (23) on Sz. Requiring the adjoint variables

i(t), i 0,1,...,k, to satisfy

T afTT0 FT 0 I fT

P TO + 1- = 2 f - b 0
3z\0 ut-I-h

(24)

aT
T~i + F T i'ia
Pi + - X=2f - ) -

~i 9z a

and

X (c) .0 , i 0 ,1,...,k ,

one may use Eq. (21) to reduce Eqs. (22) and (23) to the form
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f bm+- dt bi 0

0 +Jo6 o ,0

and (25)

Ji+ k' W", 0

where

T DIO 0 T 1tor _2  f \ - + _3 Pz~ -dt

- t f [2\1O m+l/ ab + b Jb d

and (26)

T 3 (T z) i )F
k j [2 (f 0i + x ~ A 1 Jd t ,.,

The terms 0 and i in Eq. (25) are zero if the constraints are satisfied.

If not, they play the role of errors that must be satisfied by the change

6b in b.

Completing the perturbation calculation, one has from Eqs. (4) and (11)

b _L < b + 6 b < bU (27)

and

6J= 6b . (28)
m+l

- T T Rm+l

One may now define b = [b ,b+I E R and determine 6b to minimize SJ

of Eq. (28), subject to constraints of Eqs. (25) and (27) and a stepsize

limitation. To write all equations in terms of the augmented design para-

T T iT T
meter b, one defines 0 [, (f 0 - bm+) dt] and t = [ T ,0
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The optimization method employed is the gradient projection technique

of 114,201 which is patterned after methods developed by Bryson [12,13]. First,

one notes that if (fi- 6, = 0 everywhere in [0,t], then Ti = 0. Thus,

only constraints P > 0 need to be included in the iterative calculation.i T
The reduced vector = [ i] , i > 0, is employed. Defining A [9- ri > 0,

the constraints of Eq. (25) become

+ AT 6b = 0 . (29)

The gradient projection algorithm of [14] may now be stated as:

Step 1. Select an estimated design b) (j denotes the iteration number).

Solve Eq. (1) for the associated state z (t).

Step 2. Evaluate constraints of Eq. (15) and form the index set

A = i > 0 : i

Step 3. For each i E A, integrate the initial value problems of Eq. (24)

from T to 0.

Step 4. For each i E A compute 9.i from Eq. (26) and form the matrix
AT [iT]
A = [9 ], iEA.

Step 5. Choose the desired reduction AJ in J, (normally AJ = -0.03J to

-0.10J at the first iteration) and compute

Y0 = - e [I- A(ATA) - 1 AT le

where e [0,...,0, .]
T  The parameter y is normally held constant

for iterations beyond j 0, but may be adjusted to accelerate

convergence.
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Step 6. Compute p = - (A TA) -  [2y - AT el

Step 7. Compute 6; = 1 6b + 6', where2yo

;1b [I- A(ATA)-I AT]e

-2 T A(ATA)-1

and put b(j-l) = (J) + 6b.

Step 8. If all constraints are satisfied and Ib1b'II is sufficiently small,

terminate. Otherwi~e, return to Step 1 with the new design estimate
~(j+l).

This computational algorithm has been used to solve a wide range of

optimal trajectory, control, and design problems. A comprehensive treatment

of the version of the steepest descent algorithm given above may be found [14].

While there is some computational art involved in application of this algorithm,

no real difficulty has been encountered in obtaining convergence. Further,

efficient numerical integration methods can be used to solve the equations

numerically. Based on experience in control theory, such methods are expected

to be far more efficient than previously used discrete time approximations of

[7,9,101.

The test problems solved herein are presented for the purpose of illustra-

tion and algorithm evaluation only. For more realistid and weapon oriented

applications, the reader is referred to (8,9,12,14,19]. The computational

efficiency of the algorithm illustrated herein and in [8] illustrates that it

is capable of treating problems of the complexity encountered in weapon design.
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V. EXAMPLE I, A NONLINEAR IMPACT ABSORBER

In or-der to evaluate the effectiveness of the state space method

presented herein, a single degree of freedom impact absorber problem is

first solved and results compared with a solution obtained by the nonlinear

programming method [10]. The nonlinear single degree of freedom system of

Fig. 1 has a fixed mass- M and two design parameters b and b2 that repre-

sent spring and damper coefficients, respectively. The exponents n and m

are held fixed for each design.

The system impacts a fixed wall at time t = 0, so the equations of

motion are

Mx + b2 Ixlm sgn(x) + bjIxln sgn(x) = 0

x(O) = 0 , c(0)=v

where sgn(a) = /Ia] if a # 0 and 0 if a = 0. Defining zI  x and z2  x,

one may write the equations of motion in the form of Eq. (1) as

1 0 z 2

L M 2  b21z2 m sgn (z 2 ) - bliZlI n sgn(z1)

It is desired to minimize the maximum acceleration, so an artificial

design parameter b3 is defined by
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Figure 1. Nonlinear Impact Absorber
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b z sgn(z2) + blIzn sgn(zl) - < 0 0 < t < T

and the cost function is

J =b 3

Because it is clear that acceleration will be high at impact, t 0, an

additional constraint is imposed as

(b2Vm/M) - b3 < 0 ,

where the initial conditions have been employed. Finally, a constraint

on extreme displacement is imposed, as

I l() l a < 0 ' 0 < t < T

The problem is in the form treated in Section IV. It may be solved by

direct application of the iterative algorithm of Section IV. In order to

compare results with [10], numerical data are taken as M = 1, v = 1,

Z1max = 1, and z = 12 sec. A time grid with 0.15 seconds between points

was used to solve the above problem for n = 2 and m = 1,2,3, and 4. A 5%

reduction in cost function was requested and a constraint error limit of

0.2% was used as stopping criteria.

Numerical results are presented in Table 1. These results agree with

those presented in [10]and were obtained in 6.6 sec, or 10% of the CPU

time reported in [10]. Further, calculations presented herein were carried

out on an IBM 360-65, which is slower than the CDC 6400 used in [10]. Con-

vergence was obtained in six to ten iterations, in all cases. The regular-

ity of the iterative process is Illus.rated by the plot of bl, b2, and b3

versus iter"tion number in Fig. 2.
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VI. EXAMPLE II, A VEHICLE DYNAMIC RESPONSE TEST PROBLEM

The idealized, two degree of freedom model of a vehicle shown in

Fig. 3 is used here to illustrate the method. Design parameters for this

simple system include spring constants k and k2 and damping coefficients
1

c and c2$ so b = [kI, k2, cl, c2 ]T. Vehicle dynamic state variables are

the vertical displacement and velocity of the center of gravity, z1 (t) and

(t), and the pitch angle and roll rate z2(t) and z2 (t). Defining z3  1

and z4 = z2, the state variable is z = [z1 , z2, z3, z4]T. The equations of

r'ltion may be written in- first-order form as

z(t) = Q(b)z(t) + F(t) , (30)

T F0,0 G(t) Mt
where F(t) = 0, O0, Fl(t), F2(t)]T 0 Mt)

1 2 [2 M m

0 0 1 0

0 0 0 1

Q(b) =  -k - k2  kiL1 - k2L2  -c - c2  c1L1 - c2L2

m m m m

k LkL -k kL 2 cLLcL-c L 
11 2 2 k1 1 - 2L 2  C1L1 c2L2  1 1 2 2

I I I

Here, m is the vehicle mass and I is its moment of inertia about the mass

center. The cost function in this example is taken as

ma[xT max z()
= 1 max 1z4 (t)l + X2 T ( t ) l1tc[0,T] 42tE:[0,T] 4

where X and X2 are nonnegative weighted parameters and z4 (t) is sub-

stituted from Eq. (30).
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Extreme value constraints are placed on excursions z and z2,

velocities z3 and z4 , and accelerations 3 and z4, in the form

max Izi(t)I - 0. < 0 i = 1,2,3,4

max 1(tj- 6 < 0
tc[O,T] 3-

max Iz4(t)I - e5 6 0
te[0,T]

where the 0i'6 are bounds on acceptable performance and z()andz4)

are evaluated from Eq. (30). Finally, physical design constraints limit

the range of admissible stiffness parameters, as in Eq. (4).

For purposes of computing example solutions, a forced motion vehicle

optimization problem is solved. A forcing function simulating firing of

a high impulse weapon from a light vehicle was chosen as F1 (t) = 0 and

F2 (t) as shown in Fig. 4. Homogeneous initial conditions are specified.

Other numerical data for the model were selected as: L. = 61 in., L2 
= 59 in.,

12

2W = 4,500 lb, and I = 40,200 lb-in.-sec . The weighting parameters in the

cost function were chosen as X, = 2

Table 2 shows pertinent data and results for the equivalent formula-

tions and the p-norm approximation of the cost function of Eq. (18). Both

formulations converged to the same optimal solution. However, there was

significant difference in the computing times. Average computing time was

21.4 seconds for the p-norm formulation and 9.2 seconds for the equivalent

formulation. Thus, for a system with a large number of degrees of freedom,

the equivalent formulation is formed.
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VII. EXAMPLE III, OPTIMAL DESIGN OF A VEHICLE SUSPENSION

A larger scale vehicle suspension design problem with five degrees

of freedom, 6 design parameters, and a number of extreme value con-

straints is now solved. Figure 5 shows the model, which was used in [21]

to minimize the maximum steady state response, over a given range of excita-

tion frequency. The purpose of this section is to design the vehicle

suspension system to minimize the extreme acceleration of the driver's

seat, for different combinations of vehicle speeds and road conditions,

while satisfying constraints on dynamic response and design parameters.

Spring constants and damping coefficients are chosen as the design parameters.

Referring to Fig. 5, mI represents the mass of the seat and driver,

which is supported by a spring kI and damper cI that are attached to the

main body of the vehicle. The mass of the main body of the vehicle is m2

and m4 and m5 are the masses of wheels and axles. The main body of the

vehicle is supported by springs k2 and k3 and dampers c2 and c3, which are

attached to the axles and wheels. The parameters k4 and k represent the4 5

stiffness coefficients of the tires and c4 and c5 represent the damping

coefficient of the tires. The moment of inertia of the main body about its

mass center is denoted as I and L is the total length of the vehicle. The

displacement functions fl(t) and f2(t) represent undulations of the road

surface as the vehicle is traveling. The state equations that govern the

motion of the vehicle are derived by an energy technique [19] and are

z(t) Q(b)z(t) + F(t) ,
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*Twhere z(t)= [z,. zz 1 ,... and Q(b) =[QI The

non-zero elements of Q(b) and F(t) are: Q = = =

Q4,9 = 1; Q5,10 = 1; Q6 ,1 
= -k1 /m/; Q6,2 

= k1 /m1 ; Q6 ,3 = LkI/(12m1);

Q -cl/m; p6,7 = c /m ; Q6 8  Lc/(12ml); Q7 ,1 =

Q7,2 = -(k1 + k2 + k3)/m2; Q7,3 =L(k1 + 4k2 - 8k3)/(12m?'; Q7,4  k2 /m2 ;

Q7,5 = K3/m2; Q7 ,6  c1/m2 ; Q7 ,7 = -(c1 + C2 + c3)/m2 ;

Q7,8 = -L(c1 + 4c2 - 8c)/(12m2); Q7 ,9 = c2/m2 ; Q7, 10 
= C3/M2;

Q8,1 = Lk1/(121); Q8, 2 = -L(k-l + 4k2 - 8k3)/(121);

Q8,3 = -L2 (k I + 16k 2 + 64K 3)/(1441); Q8, 4 = Lk2/(31); Q8, 5 = -2Lk 3/(31);

Q8,6 = Lc1/(121); Q8, 7 
= -(c 1 + 4c2 - 8c3)L/(121);

Q8,8 = -(c 1+ 16c2 + 64c 3)L
2/(1441); Q8 ,9 = Lc2/(31); Q8,10 

= -2Lc 3 (31);

9,2 = k2/m4 ; Q9 = Lk2 /(3m3 ); Q9 4 = -(k2 + k4)/m4 ; Q 9 7 
= c/M

Q9 ,8 = Lc2 /(3m 4); Q9 ,9 =(c2 + c4)/m 4; QIo,2 
= k3 /m5;

Q10,3 = -2Lk 3 /(3m 5); Q10,5 = -(k3 + k5)/m5 ; QIO,7 
= c3/m5 ;

QO 8 
= -2Lc 3 /(3m 5); QI0 1 0  -(c3 + c5)/m 5; F9  [k4fl(t) + c4f1 (t)/m 4;

Flo = [k 5 f 2 (t) + csf 2 (t)]/m5.

Since this is a transient dynamic response problem, the input road

conditions are quite important. The dynamic response depends strongly on

the displacement history of the wheels on the road surface. Referring to

J Fig. 6, road conditions are defined as a sinusoidal undulation, with constant

amplitude x0 and variable half-wavelengths Zi' The tire displacement is

defined as
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x0 [l os2Y i-i i£.y < y < y i odd
v~y = X0 [i+Cos (y I-)i-

£.Y , osf~ y i < y < y i even,

ii

where y is a coordinate measured along the road, and y = E Z..
j=1 j

If the speed of the vehicle is a constant S, the elapsed time between

front and rear tire encounter of the same point on the road surface is

t = L/S. Since S is the speed of the vehicle, y = St, and

x0  - cos Wi(t - til.) , ti -  < t < ti  i odd[1iJ - _

v(t) = il]t
X0 [1 + cos W.(t - t, t'-I < t < t i even,

where W= rS/Z and t' = y i/S. The vertical displacement history for

the road surface at the front wheel can, therefore, be defined as

v(t) 0 < t < T

fi(t)

0 ,otherwise

where TI is the time at which the road undulation ceases. The vertical

displacement of the road surface at the rear wheel has the same value as

the front wheel, but with a time lag t . That is

f21(t) = f1(t - tF) t a < t < T I + t .

With these displacement functions and equations of motion, one may now

define the optimization problem. The design problem is to minimize the
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maximum passenger acceleration, such that certain relative displacements

do not exceed established limits. The cost function is thus chosen as

max jz3(t;b)j
te[O,T]

iKl,2,...,

where a is the number of road conditions treated and z (t;b) is the

acceleration of the passenger seat for the i-th road condition. One may

define

with the additional constraints

max 1z (t;b)j - b7 < 0 , i1
te[O,T]

The performance constraints are

= max Iz(t;b)l- 01 < 0 , i a + 1,...,2a (31)
tc[O,t]

where 0 is a fixed maximum allowable acceleration. The motion of

the vehicle must be constrainted so that the relative displacements between

the main body and the driver's seat, the front wheel, and the rear wheel;as

well as the relative displacements between the road surface and the front

and real wheels; are within given limits for each road condition considered.

These constraint equations may be written as follows:

Sz(t;b) + "-- z3(t;b) -z(t;b)j - 0 <0 (32)

i = 1,2,3,...,C 3

if 245



= a I-z(t;b) zz(t;b) - 03 < 0
teO,(]

i = 1,2,3...,a (33)

4a~i max jz 5(ttb) - z 2(t;b) + 32L ( ;~ - 6 o
tE[0, T0

i = 1,2,3,...,a , (34)

= max Iz (t;b) - fl1(t)I - 5 < 05
te [0, r]

i = 1,2,3,...,a (35)

max Iz i(t;b)- f (t)j - 6 < 0
t0,T]

i = 1,2,3,a , (36)

where 02 through 06 are the maximum allowable displacements. Equations (31)

through (36) are (36) are transformed to the f6rm of Eq. (14). Bounds must

also be placed on the design parameters as follows:

L Ub j < b , < =i l$2,3,...,6 ,(37)

where b = [kl,k2,k3,Clc 2,c3
IT .

For an example calculation, numerical data are m1g = 290 lb,

m2 g = 4,500 .b, m4g = m5g = 96.6 lb, I = 41,000 lb-in.-sec 2 , L = 120 in.,

k = k5 = 1,500 lb/in., and c4 = c5 = 5 lb-sec/in., lower and upper bounds

are for b are [50, 200, 200, 2, 5, 5]T  and

[500, 1000, 1000, 50, 80, 80] T , respectively. The units for z1, z2,
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z4, and z5 are inches and for z3 are radians. Bounds for the constraints

in Eqs. (38) through (43) are 0 = [400, 2, 5, 5, 2, 2]T . Homogeneous

initial conditions are used in all calculations.

Two different road profiles (c = 2) are imposed as shown in Fig. 7.

Profile (1) is a combination of two sinusoidal -curves with different

half-wavelengths £i = 360 in. and £2 = 144 in. and an amplitude x0 = 5 in.

This profile represents a severe bump condition that may be encountered

at moderate speed. Profile (2) is a continuous sinusoidal curve with a

constant half-wavelength £i = £2 = £3 = £4 = 480 in. aud an amplitude

x0 = 2 in. This condition is typical of a high speed highway condition.

For the design problem, two vehicle speeds associated with these two road

conditions are considered. The second displacement function is determined

by Profile (2) with a vehicle speed of 960 in./sec. This results in

t = 0.125 sec and wi = 27, i = 1,2,3,4. The first displacement function

is determined by Profile (1), with a vehicle speed of 450 in./sec. This

results in t. = 0.2667 sec, w, = 1.25w, and w2 = 3.125 . The cost func-

tion is chosen to be the maximum driver acceleration in the highway

condition, of profile (2) only,

J max Iz (t;b)j . (38)
tE[O, ]

Constraints of Eqs. (32) through (36) are imposed for both road conditions,

The requested cost function reduction was one percent in the first

iteration and the initial design was as shown in Table 3. This resulted

in 116b 1 1 = 0.8131 and I16b21, = 12.78. The initial cost function

value was 198.6. Maximum value of was 332.6. The constraint on z
1247
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(a) Profile (1)

; (y)

480" 480"- 480" + 480"

(b) Profile (2)

Figure 7. Test Road Conditions
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was active and constraints of Eqs. (32) and (33) were violated for

Profile (1). After 3 iterations, a constraint of Eq. (34) was violated

for Profile (1). For all iterations after the seventh, Eqs. (36) were

satisfied, and Eqs. (33) and (34) remained active. At the optimum design,

after 44 iterations, '111bl1 = 0.4147 x I0-1, 116b 2II = 0.9584.x 12,

and the optimum cost function was 103.5. The maximum value of was

258.5. The design parameters bI , b2, and b3 reached their lower bounds.

The average computing time was 35 seconds for each iteration. Numerical

results are given in Table 3.
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VIII. CONCLUSIONS

The state space method of optimal design of dynamic systems compares

favorably both theoretically and computationally, with direct nonlinear

programming methods. in the shock isolator example of Section V, the

state space method required only one-tenth of the computing time employed

in a nonlinear programming formulation[l0]. As the dimension of design

problems increases, it is expected that the ratio of computing times will

still further favor the state space approach. A larger scale, five degree

of freedom vehicle dynamic optimization problem with multiple input con-

ditions was also solved with the state space algorithm, with good results.

This problem involved twelve max-value constraints, a max-value cost

function, and six design variables.

Numerical results for each of these problems indicate that the cost

function reduces rapidly in the first few iterations. Although the rate

of convergence slows when the cost function is within one to two percent

of the optimum, this is not seen to be a practical hindrance of the method.

Further, a more sophisticated optimization algorithm may yield fine

convergence more rapidly.

The steady performance of the state space method on the example prob-

lems solved herein and the authors' experience with such methods in problems

involving up to 41 degrees of freedom [ 2] lead them to conclude that the

method can be effectively applied to practical. dynamic system optimization

?roblems. Improvements in the algorithm may be made by (a) employing more

efficient numerical integration techniques, such as stiff integration

methods, (b) constructing a modular program to allow rapid problem set up
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and solution, and (c) use of methods such as the augmented Lagrangian

for constructing the descent aspect of the algorithm.

Experience obtained with the algorithm on the problems presented

herein, on larger scale problems [2,3], and on the important problem of

dyanmics of systems with intermittent motion lead the writers to conclude

that the state space method is practical for the type of design problems

encountered in advanced weapon design. It is suggested that the advances

in dynamic analysis of precision weapons presented in these proceedings

can be employed, with the state space sensitivity analysis and optimiza-

tion method, to practically carry out parametric design of systems such

as the Anti-Armor Automatic Cannon. Advancements needed include algorithm

development for larger scale nonlinear systems that incorporate intermit-

tent motion. Further, user oriented codes may be developed for classes of

applications that will allow the designer to determine sensitivity of

dynamic performance to design variables that are at his control. This

will aid him in deciding on needed design changes based on his experience,

or in proceeding with automated iterative optimization. The writer recom-

mends the former approach, to take advantage of design experience, prior

to launching into a large scale effort in automated optimal design.
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TABLE 1

RESULTS FOR NONLINEAR IMPACT ABSORBER

m 12 3 4

b0.500 0.500 0.500 0.500

cJ
pb0.500 0.500 0.500 0.5

411 iI6bliI 0.53 0.80 0.65 0.47

bH .5 .9 .8 .5

tob0.531 0.597 0.682 0.752

C' 053 .57 .820.5

b 0.531 0.597 0.682 0.752

I1bbII 0.57x10- 0.57x10- 0.83x10- O.5lxlO-
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TABLE 2

DATA AND RESULTS FOR TWO DEGREE OF FREEDOM SYSTEM WITH DAMPING

Lower Bounds on B = [10, 10, 0.5, 0 .51T

Upper Bounds on b = 1000, 1000, 50, 50 ]T

e = [0.007, 0.005, 0.5, 0.5, 0.15, 0.5] T

s

P= 6

Starting Optimal Values Optimal Values
Variable Values P-Norm Equivalent

Formulation Formulation

k 2.000 x 102 2.091 x 102 2.092 x 102

k 2.000 x 102 2.101 x 102 2.101 x 102
12

1 1 1
c 4.000 x 10 4.934 x 10 4.944 x 10

c2  4.000 x 101 5.000 X 101 5.000 x 101

Max Iz1j 9.224 x 10- 3  6.999 x 10- 3  6.999 x 10- 3

-3 3 -3Max z 5.550 x 10-  4.999 x 10-  4.999 x 10-

Max 1z31 3.015 x 102 2.303 x 10-2 2.306 x 10

Max z4  2.511 x 10- 2 2.215 x 10- 2  2.215 x 10- 2

Max z3 1.888 x 10 1.491 x 101 1.497 x 10-1

Max z4  2.985 x 10-  2.985 x 10-  2.985 x 10-
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TABLE 3

RESULTS FOR THE 5-DEGREE OF FREEDOM VEHICLE

Starting Values Optimal Values

k1 i00.0 50.00

k2  300.0 200.00

k3  300.0 200.0

c 10.0 46.58

c2  25.0 78.44

c3  25.0 26.21

d 198.6 103.50
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I. Introduction

Recent emphasis on precision in the development of automatic weapons

systems with high impulse has led to the need for a well designed automatic

mechanism with intermittent motion. While design craftsmanship has served

well in the past in development of such automatic weapons, their design-

has not received the level of analytical support it deserves. Typical of

this situation is the lack of literature on mechanisms with intermittent

motion. Reference [1] presents a survey and explanation of the functioning

of mechanisms occurring in clocks, process machinery, and' weapons. It is,

however, not at all analytically oriented. A survey of the literature on

dynamics of mechanisms quickly reveals that, while intermittent motion is

acknowledged as an important mechanism problem, virtually no literature

is devoted to this subject.

The purpose of this paper is to present an analytical design formulation

of a specific automatic weapon mechanism, characterize its motion with piece-

wise smooth differential equations, and employ methods of optimal control

[2] to obtain the sensitivity of its dynamic performance to design variation.

A dynamic model is developed and the sensitivity of several measures of

dynamic performance to design variation are calculated. A computer program

to carry out the dynamic analysis and sensitivity calculation is described

and numerical examples of design sensitivity analysis are solved. In addi-

tion to a dynamic analysis the program generates sensitivity coefficients

that tell the designer what the effect of design changes will be consistent

with the performance constraints that he has imposed.
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The logical analytical extension of this capability for automatic

iterative optimization of weapon dynamics is then presented. An optimization

algorithm is derived and numerical results presented, which determine optimum

performance of a 75 mm automatic weapon.

II. Description of the Mechanism and Definitions of Special Times

The 75 mm mechanism shown in Fig. 1 consists of three main masses:

the barrel assembly B, the sleeve S, and the sear SR. A camming action is

used to move the sleeve over the telescoped cartridge so that one can safely

ignite the charge during each cycle of system operation. The B-cam path is

fixed in the barrel assembly B, while the R-cam path is fixed in the receiver

R. 'The base of this receiver makes an angle a with the horizontal. The

seleeve S is connected by a rigid bar PQ to a pin at point P that is con-

strained to slide without friction along the cam paths.

Two forces, b1 0 and bll, drive the barrel during its forward (counter

recoil) and backward (recoil) motions, respectively. In order to slow the

barrel assembly during extreme motion, a front buffer D1 and a real buffer

D2 are added to the system. Both front and rear buffers are designed to

produce constant retarding forces when the barrel is in contact with them.

Special times ti at which impact or some other irregularity of inter-

mittent motion occur are introduced as an integral element of the dynamic

model. Between these times, the motion of the system is quite regular. At

these times, however, discontinuities or changes in system configuration

can occur. Special times will now be defined for two modes of weapon

operation:
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A. Firing from run-out.

1. to L 0: At this instant, the barrel assembly B

leaves the sear position 0 with velocity b8. (Fig. 1)

2. tl: At this instant, the pin P starts to move along

the R-cam path, and the rigid bar PQ connecting P to

S starts to move the sleeve S forward. (Fig. 2)

3. t2 : At this instant, P reaches the flat portion

of the R-cam path and the bar PQ becomes parallel

to the z-axis. The sleeve S then moves with the

barrel assembly B at the same velocity, and the

charge is therefore ready to fire. (Fig. 3)

4. t3: At this instant, B contacts the front buffer

D . (Fig. 4)

5. t4 : At this instant, the charge is ignited

(impulse = b9). (Fig. 5)

6. t4 + At: At this instant, B and S start to move

rearward. (0 < At << 1)

7. t 5: At this instant, contact -between B and D

ceases. (Fig. 6)

8. t6 : At this instant, S starts to move forward

relative to B (i.e., the pin P reaches the

curves portion of the R-cam path). (Fig. 3)

9. t7 : At this instant, P reaches the lower cusp

of the R-cam path, and the sleeve S comes to

rest relative to R. (Fig. 2)
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10. t8: At this instant, B passes the sear position 0

and starts to move rearward with the sear SR, both

moving with the same velocity while compressing the

rear buffer D . (Fig. 1)

11. t9: At this instant, B reaches zero velocity

prior to f.ts forward motion due to the driving

force b 1. (Fig. 6)

12. t1 0 : At this instant, B returns to the sear

position 0. This completes one cycle of system

operation. (Fig. 1)

B. Firing from in-battery position.

1. to = 0: At this instant, B rests at x = b and the

charge is ignited. (Fig. 5)

2. t0 + At: At this instant, B starts to move

rearward.

3. t1 : At this instant, contact between B and the

front buffer D ceases. (Fig. 4)

4. t2 : At this instant, S starts to move forward

relative to B. (Fig. 3)

5. t3 : At this instant, S comes to rest on R.

(Fig. 2)

6. t4 : At this instant, B passes the sear position

0 and starts to move rearward with the sear SR,

both moving with the same velocity while com-

pressing the rear buffer D2. (Fig. 1)
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7. t5: At this instant,, B and SR reach their rearmost

position. (Fig. 6)

8. t 6: At this instant, B passes the sear position-

0 and SR comes to rest on R. (Fig. 1)

9. t7 : At this instant, P starts to move along the

R-cam path. (Fig. 2)

10. t8: At this instant, P reaches the flat portion

of the R-cam path. (Fig. 3)

11. t9: At this instant, B first contacts the front

buffer D (Fig. 4)

12. t10 : At this instant, B comes to rest on R, and

one cycle of system operation is completed. (Fig. 5)

III. Formulation of the Design Problem

In this section, the design problem is formulated first for the specific

75 mm automatic weapon under consideration. This problem is then embedded

in a general formulation that will lead to a sensitivity analysis and opti-

mization algorithm.

A. The 75 mm design problem.

Let the design parameters b. and the state variables z be defined as

follows (see Fig. 1):

bI = firing distance measured from the sear position 0

b2 = barrel assembly mass

b3 = sleeve mass

b4 = sear mass

-i -- O



b5 = constant front buffer contact force

b6 = constant rear buffer contact force

b = distance between the sear position and the front buffer

b = initial velocity of the barrel
8

b9 = imposed impulse

b 10 driving force acting on the barrel during its

forward motion

b 11 driving force acting on the barrel during its

rearward motion

= z-coordinate of the barrel

z2 velocity of the barrel (Zl)

Optimal design problems for the two distinct modes of weapon system

operation are formulated as follows:

1. Firing from run-out. Minimize the objective function

J t - t0 (i.e., maximize t1 0 - t8 , the time avail-

able to feed the charge), subject to the following

constraints:

a. equations of motion:

dz/dt = f(z,b,t) , 0 < t < t1 0 , t # t. , i 1,2,...,9

with initial conditions, z1 (0) = 0 and z9(O) = b9 .

The equations of motion are listed in Appendix A.

b. definitions of the special times ti (see Fig. 1):

z1 (t) - S4 = 0

zI(t2) - S3 - S4 S5 = 0
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z 1 (t 3) -b 7 = 0

z1 (t 4) - b = 0

z1 (t 5 ) - b 7 =0 ,

z1 (t6 ) -S 3 -S 4 -S5 =0

z1 (t 7) S4= 0

z I(t 8 ) = 0

z2 (t 9 ) = 0

z (t0) = 0
1 10

c. constraints on the design parameters:

bi b bU < 0 and bL _b i 1,2,...,l1i bl- i - bi -b -0i=,2.,i,

U L
where bi  and bi are the upper and lower bounds on bi.

d. 2 =- t - h < 0. This constraint requires that

the cycle time not exceed h .

e. q1 3 -t 2 - t 6 + h2 < 0. This constraint requires that

the time during which the sleeve is in its functional

position be not less than h2.

-f 14 = IZl(t 9) - h3 < 0. This constrains the rearmost

position of the barrel assembly.

2. Firing from in-battery. Minimize the objective function

J = t4 - t6 (i.e., maximize the feeding time t6 - t4) ,

subject to the following constraints:
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a. equation of motion:

dz _f(z,bt) ,. < t < t t t i

with initial conditions, z (0) = b and

z2 (At) = b9/(b2 + b3). The equations of motion

are listed in Appendix A.

b. definitions of the special times t.:

zl(t) - b 7  0

z(t 2 ) - 3 -S 4  S5 =0

z 1 (t 3 ) -S 4 =0

zl(t 4 ) = 0

z2 (t6) = 0

zl(t 6 ) = 0,

zl(t 7) -S4 =0

z (t8) -S 3 - S4 -S 5  0

z1 (t 9) -b 7 =0

z2(t1 O) = 0

c. constraints on the design parameters:

b i - b < 0 and b - bi < 0 , i = 1,2,...,ll

272



d, p t -h < 0
12 10 1-

e. 13 z~z (tO) - h2 < 0. This constrains the location

of the barrel assembly at t O.

" 14= l Zl(t5)1 3 -

B. General Formulation.

From Section A, one can see that the general mechanical design problem

of intermittent motion can be restated as follows [3,4]: Determine the

design parameter vector beRm, the state variable vector z(t)cRn, and the

special times tl, t2 ,..., tn to minimize the cost functional

J = g°(b,,z) + . fo[tz(t),b]dt , (1)

T T
where t = (tl,t2,...,t) and z = (Z(t1),z(t 2),...,z(t)), subject to

the following conditions:

1. State equations

dzidi = f.(tzb) , i = 1,2,...,n , 0 < t < tn , t # tj , (2)

dt 1

2. Initial conditions

z(0) - p(b) = 0 . (3)

3. Equations defining the special times

Q i Wti),b) = z i(ti ) - W i = = 0 (4)

where 1 < < n.
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4. Functional constraints

(5)

< 0 a -= r ' + l .. . , r

where

t

=ga (b,t,z) + fo L a[t,z(t)ibl'dt (6)

5. Pointwise constraints

=0 
0 < t < t , 6

= l..q

( u)(7)

< 0 0 < t < t 
= q' + l,..,, q

If there is a constraint of the form H(t,z,b) < 0, 0 < t < t ,

it can be transformed to the functional form of Eq. (5); i.e.,

0 {H[t,z,b] + IH[t,z,b]ldt 0 (8)

IV. Sensitivity Analysis

In order to solve the design problem, it is necessary to determine how

changes in the design parameters effect the cost functional J, the constraint

functionals %, and the constraint functions ,, Here, an initial sensitivity

analysis is made, and the result is then applied to both firing from run-out

and firing from in-battery.
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From Eqs. (1) and (6), it can be seen that J and 4 have the same form.

Jence, results obtained Lor the functional J can be immediately applied

to 'Ia

The change in J that is associated with first-order changes in the

variables b, t., and z(t) is givenby

J

0= 6b + g Az(t.) + - StSi b I z(t )  8 -t i
i=o i=l i

n-i

+ [fo(ti - 0) - f (t. + 0)]St i + f (t - O)ft
0 ~ 0 1 1 0 r

+j - 0z 6b) dt , (9)

t~ af f fo 3zfo +_W

where Az(t.) is the total change in z at point tj, and -g - - 0

etc. If z(t) is continuous, then it follows that at the times til

Az(ti - 0) = z(t i - 0) + f(ti - O)6ti = 6z(ti + 0) + f(ti + 0)6t i 
= Az(ti + 0),

(10)
where 6z(t) and St are independent first-order changes in z(t) and ti.

If z(t) is discontinuous at ti , with jump S(b), then

as

Az(t i - 0) +Tb 6b = Az(t i + 0) . (11)

Taking the first variation of the state Eq. (2) gives the following

relationship among the independent changes 6z(t) and 6b:

dt 6 z + a b , 0 < t < t , ti (12)
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The initial conditions of Eq. (3) require that

Az(0) - -- 6b = 0 .(13)ab

Further, Eq. (4) requires that

ab.

Az (t) - 6b = 0 . (14)
I

It is desirable to express J solely in terms of 6b. To reach this

goal, the adjoint equation

dX HfT af T

XfT afT (15)

is introduced, where X(t)cRn is an adjoint vector variable corresponding

to the functional J. Integrating the equation

-d (XT z) -XtT)6z + AT d(Z) (16)
dt dt /dt

from ti to ti+ I , with 0 < i < - , and using Eqs. (12) and (15), one

obtains

X (ti+ 1 - 0)6z(ti+1 - 0) - XTft i + 0)6z(t i + 0)

I o IT f
Ati (-T 6 3f 6b dt (17)

Summing terms from Eq. (17) over i 0,1,2,...,n - 1 yields
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tn af r-i-I [T~t
0 -- J - 6z dt + AT(0+>Sz(O+) + [ k[ (t - )6z(t - 0)

X T(t i + 0)6z(t i + 0)]+ AT - 0)6z(t 0) t (T f 6b dt
1 1 a .

(18)

Here, only the case in which z(t) is continuous in (0,t ) is treated. The

case in which z(t) is discontinuous at some points t. can be treated in a1

similar way using Eq. (11). This is done in the example.

Substituting Eq. (10) into Eq. (18) gives

0 n 6z dt = A (0+)Az(to)+ l [(t -0) - X(t + 1)Az(t

+ [AT(t i - 0)f(t -0) - T(ti+O)f(ti+0)]6ti} X (tn_0)Az(tq_0)

t

+ ( - O)f(t - 0)6t + 6 dt . (19)

Substituting Eq. (19) into Eq. (9) leads to the following expression.

= 6 b + Xa(oz J z(ti) AT(ti 0) + A (t i +0 Az(ti)

+ 0 XT (t-0) Az(t) + i + fo(t -0) - f (t + 0)
(ttn Io

+ XT(t -)f(ti-0) _ T(t+0)f(ti +0)St + i g + fo(t - 0 )

ri ] at

L0) 6t + Jq +AT 6b] dt (20)

+ -0)f(t I + i27
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Substituting Eqs. (13) and (14) into Eq. (20), one obtains

ag [9 a -[wa 0 .. ,(6J [0z(0) + x ) +_ (ti) T 0i (t.0)+Xi~ (t + 0 -

+ b 3z tO) P + #£0

+ )(t.) + 2 i~(tl - 0=i1 F gg

f £t + z(ti)- = [(t) + £t -0 z(t

+ 3 (t xo(t- 0 )  T(t+-0)f(t.-O)-A (t.+0)f(t.+0)]t i

nirl

X (tg+f (t -0) +X 0(t - 0)f(t

+j [(2- T .6b dt . (21)

Thus far, the initial and intermediate conditions for the adjoint

variables have not been specified. It is desirable to specify these con-
ditions in such a way that Eq. (21) is independent of Az(ti) and 6t; e.,

i=i n ag0  0)

S(t ) x(t -0) + X,(ti + 6Az,(ti)

i-i £=i 2 i

-an 0g n)]

+ =[ _z (n) (tn - ol z(tn)

n a
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n-i ag3 T Ti
+ i L +i fo(ti 0) -f(ti +O)+X (t 0)f(t i 0) -T(ti+O)f(t +0)6t

+ go - --

+ + fo( -. 0) + XT - 0)f(%t 0 ]6t =0 . (22)

Since all Az(t.) and 6ti in Eq. (22) are independent, it is necessary that
1go

0t o X (t ) = 0 1,2,...,n , k.# £ (23)

az 91(t) I (t-)=

and

3go + f (tn - 0) + xT (t - )f(t - 0) 0 (24)at of

For each i - , n - 2,...,2,1,

aX(ti) (i + £(ti + 0) 0 k 1,2,...,n , k# £i (25)

and

ago
0- + fo(t -0) - fo(t+) + T (ti-)f(ti-0) - XT(t +0)f(ti+0) = 0

(26)

Equations (23) through (26) are used to solve for the adjoint variable X(t).

As a result of Eq. (22), Eq. (21) becomes

6J -i" + L~~)+ xT(0+) a

+ x [ go - i(ti - 0) + x 2 (t i + 0)]
+ l az i(t Bb
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I I___ I FTi
S0 + .dt 6. (27)

As noted in the foregoing, Eq. (27) can be applied to both J and For

convenience, define

~T Dg [Tg
3b + [-- + x (o+) 3b

1 aw.
-_(t -0)+X) (t + 0 b

a (t - 0 3b

-+ x (t ) 3w n dt (28)

3b~t 2 ab 3

and

TFag 1T
a a L a a

= -(0) + x +) 3b

+i Lxzti)  A 2 i(ti -( 0) + i(ti + 0 )

a a j + f - a.+ (t af) dt (29)
+ z rL z(tn)  zg (n  - 0 b -b7 ;--b

Here, 2 and x are the sensitivity coefficients of J and ' with respect

to the design parameter b.

With this notation,

6J= kj 6b (30)

2,80
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and

T
6a Z' a6b (31)

a

Thus, J and 65 a are now expressed solely in terms of 6b, as was desired.

One can now proceed to find the sensitivity coefficients for the cost

functional J and the functional constraints P12' 13' and defined in

Sections III A(l) and (2). Only the sensitivity coefficients for the cost

functionals of both modes will be given here. Those for the functional

constraints are given in Appendix B.

A. Firing from run-out.

Let X and X be the adjoint variables of the state variables z and z
1 21 2

with respect to the cost functional J= t8 - t1 0. Equation (27) becomes

8'10

6J = [-Xf(t 4 -) + Xl(t 4+)]6bl + [-Xf(t3-) + X (t3+) - Xl(t 5 -) + Xl(t5+)]6b 7

+ X2 (0+) 6b 8 + X2 (t 4 +)6 b2 + b3) +0 T Sb =_ T b

~T
Here, J= (k ' zii )  is the desired sensitivity coefficient vector

of the design parameters, with

t0
J I T 3f

i = - X(t-) + Xl(t4+) t X dt
1 14 14 JO

b T f
z2 = - X2(t4+ )  9 dt
2 (b2 + b3)

2  02

tlki X t +) + f l 0 XT af dtJ= - A2(t4+) b 2 + jA b--dt

3 2 4 (b2 + b3)
2  

3O
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tlO

l(t) + xl(t3+) - X(t) + )l(t 5 +) + 1 XT  -f dt
£7 1 3ab-15- 15 O - " 3b

1t 0 xT afJ 2( + + -cdt ,
8 2 0 ab8

X2 (t 4 +) (t10 T 1f
9 ab9

2 3 fO 9

T A T 3f dt , i 4,5,6,10,11

The end conditions and jump conditions for the adjoint variables are

(Eqs. (23)-(26)):

A2 (tO - ) = 0

- A2 (t j ) + X2 (t + ) = 0 j = 8,7,6,5,4,3,2,1

- l (t9 -) + A(t 9 +) 0

2
[Xi(t -) f(t-) - A.(t +) f (t +)] 0 j 9,7,6,5,4,3,2,1

2
2+ [ (i(t 8 -) f (t 8 .) - Ai(t 8 +) fi(t 8 +)1 = 0i=l

2A [xi(tl- ft 1 O- = 0 8

=l
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With these conditions, one can solve the adjoint equation backward in the

time variable t, where this equation is

d- =- B- ' te(O,tl0
dt 3z10

The procedure used to solve for the adjoint variables can be found in

Section 2.5 of [5].

B. Firing from in-battery position.

Proceeding in a similar manner, one obtains

J = X 1(0+ ) 6b1 + [-Xl(t 1 -) + x 1 (t 1 +) - X1 (t 9 -)+ Xl(t 9 +)]'.b 7

+ X2 (O+) 6 b2 + b + D 6b dt20 b ) f b'

T
where again, SJ = Z 6b. The end conditions and the jump conditions for

the adjoint variables are:

- l(t 10) = 0

- X1(t5 ) + Xl(t 5 +) 0

2(t - ) + X2 (tj+) = 0 , j = 9,8,7,6,4,3,2,1

2j Exi( t t +) fi(tj+) = 0 , j = 9,8,7,5,3,2,1

2

S i(t10-) fi(t1 0 -)M 0
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2
1 + [ Ill(t 4 -) fi(t4 -) - Xi(t 4 +) fi(t 4 +)] = 0

i=l

2
-1 + [1i(t 6 -) f- (t(t6+)fi(t 6+)] =0

i=l

V. Numerical Results and Discussion

With the sensitivity coefficients developed in Section IV and

Appendix B, one can apply the algorithm given in Section 3.4 of [5] or

Section 8.2 of [4] to obtain the solution to the optimal design problem.

The numerical results presented here utilize inches as length units, seconds

for time and slugs/12 for mass. The following input data were used.

a. Physical dimensions of the system:

l S2 S3  S4  S5

2.5357 6.0 16.0 1.6198 11.668 3.125

b. Approximate cam path shape functions:

R-cam: y = 1.7038 - 0.7988n2 + 0.33553

- 0.0769n
4 + O.O071n

5

B-Cam: y = 2.5357 - 5.6869 + 0.90071&2

3 4 5
8.8329 3 + 4.3107g - 0.8154 5

c. Values of hi in the functional constraints:

hI 1h 2  h 3

Run-Out Case 0.65 sec 0.01 sec 3.0 inches

On-Battery Case 0.65 sec 28.0 inches 3.0 inches
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d. Friction coefficient:

=0.17

The optimal solution for the run-out case is 0.19 seconds (compared

with an experimental result of 0.13 sec) as shown in Fig. 9. The program

1
converges within six iterations, and the history of 116b 11 is shown in

Fig. 10. The optimal design and the sensitivity coefficients at the optimum

point are given in Table I. This table shows that the design parameters b1

(firing distance), b2 (mass of barrel), b3 (mass of sleeve), b, (mass of

sear), b7 (distance between sear position and front buffer) and b8 (initial

velocity) have more effect on the feeding time than the other design para-

meters. The solution of the equations of motion is shown in Figs. 7 and 8.

The optimal solution for the on-battery case is 0.29 seconds (compared

to an experimental result of 0.12 sec) as shown in Fig. 13. The optimal

design and the sensitivity coefficients are given in Table II. Again, the

design parameters bl, b2, b3, b4 and b7 have more effect on the objective

functional than the other design, parameters. The corresponding dynamical

solution is shown in Figs. 11 and 12.

The dynamic equations and the adjoint equations are solved by the

fourth-order Runge-Kutta method. The solutions of the equations of motion

are compatible with experimental results.

The results which follow show that the optimal design in both cases

satisfies the basic requirements. The number in parentheses is required

value.

A. Run-out case.

I. firing point 20.75 inches in front of sear position

(20.5 inches),
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Figure 7. Displacement Curve of the Barrel for

the Run-Out Case at the Optimal Point
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Figure 8. Velocity Curve of the Barrel for
the Run-Out Case at the Optimal Point
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Figure 11. Displacement Curve of the Barrel for

the on-Battery Case at the Optimal Point
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2. firing to sleeve unlock time- of 38.5 milliseconds

(30 ms minimum),

3. recoil velocity at sear position of 9.17 fps

(4 to 10 fps).

3 B. On-battery case.

1. firing point 25.19 inches in front of sear position

(25 inches),

2. firing to sleeve unlock time of 62 milliseconds

(30 ms minimum),

3. recoil velocity at sear position of 6.33 fps

(4 to 10 fps).

The optimally designed front and real buffers produce constant forces

of 6900 lb and 12,100 lb, respectively. The optimal fore and aft driving

forces b10 and b for the run-out case are 1600 lb and 2000 lb, respectively.

For the on-battery case, these forces are 1970 lb and 2175 lb, respectively.

These values are satisfactory because their ratio is between 1 and 2 as

desired.

The foregoing solutions are obtained for the case when the elevation

angle a = 00. For any other angle a in the range -10' to 40°, one can

obtain the corresponding driving forces simply by adding or subtracting

the component of the gravity force that is parallel to the barrel axis.
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VI. Appendix A: Equations of Motion

A. Firing from run-out.

0< t < t1

b2 b 0 - b2 g(p + 1) sin

where p is the friction coefficient.

t1 < t < t2

____ f .. .

b21 b10 - b9g(V + 1) sin + a a B p(aRYp + 'p)
R cB

(aR sin0 + cosO)

cose [b3Zs + b3g(p 
+ 1) sina] "

This equation of motion (for the cam reaction interval) is

derived in [5].

t 2 < t < t 3
4-.

(b2 + b3)z = b1o - (b2 + b3 )g(P + 1) sin

t < t < t
3 4

(b2 + b3 )z I = bl0 - (b 2 + b3)g(p + l)sina - b

t 4 + At < t < t 5

(b2 + b3)z = b - (b2 + b3)g(l - I) sina
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t 5 < t < t6

(b 2 + b3 )z bl - (b 2 + b3)g(l - .) sina

t 6 < t < t 7

b2z I =b1 1 - b2g(l-u) sin- p R M(R p +p

(-a- sinO + cosa)

cosa [-b3z - b - P)g sina]

t 7 < t < t-8

b b - b2g(l -) sina

t8 < t < t9

(b 2 + b)z = b - (b2 + b4 )g(1 - P) sina + b

t9 t 10

(b2 + b4)z1 = b1o - (b2 + b )g(l + P) sin

B. Firing from in-battery position.

At<t < t1

(b2 + b3)z = b - (b2 + b3)g(l - P) sina
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< t < t 2

(b 2  + b3 )g(l - i) sina

t 2 < t < t

b2 z 1 1 b 2 g(l - sin + Zp )

(-a sinO + cosO)
R cose [-b 3 Zs - b3g(l - sina]

t3 < t < t4

b 2 z1 i= b -b 2 g(l - ji) sine

t 4 < t < t 5

(b 2 + b- (b2 + b4 )g(l - j) sina +b

t5 < t < t6

(b2 + b = 4)- (b2 + b4 )g(l + t) sina

t 6 < t < t7

b21 b 0 b 2g(l + ) sina
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t 7< t< t 8

a (
21 1 b 2g(l + p) sina + R - M +

(aR sinO + cosO) )
S cos[b + b3g(l + .) sina]

t < t < t
8 9

(b2 + b3) I = b10 - (b2 + b3)g sina

t9 < t < t10

(b2 + b3)zi = b - (b2 + b3)g sina - b5

VII. Appendix B: Sensitivity Coefficients of

the Functional Constraints

A. Firing from run-out.

. 12 =  t10 h h1 <  0

612 [- 1 (t 4 ) + x (t 4 +)] b1 + [-x 1 (t 3 -) + (t + )

- X1 (t 5 -) + x1 (t5 +)]6b 7 + x2 (0+) 6b8

+ ? 2 (t 4 +) 6(b 2 + b 3 ) + J--3 6b dt
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The end conditions and the jump conditions for X and X2 are

1 2

- X2 (t 1 0 -) = 0

- Xl(t 9 -) + xl(t 9 +) = 0

- X2(t.-) + x2 (t.+) = 0 , j = 8,7,6,5,4,3,2,1

2
1 + X [i(tl0 - ) fi(t0 - )M = 0

2
[Xi(t -)f i(t.-) - i(t+) f.(tj+)] = 0

i=1 i

j = 9,8,...,2,1.

2. t t + h < 0
'13 2 6 2 -

3= [x(t 4 ) + xl(t 4 +)16bl + (t3)+ l(t

x (t 5 -) + x(t 5 +)]6b 7 + X2 (0+) 6b

tiob tO T 3f

+ x 2 (t 4 +) b + xT 6b dt

The end conditions and jump conditions for XI and X are
1 2

- 2(t10) = 0

2
[X i(t 1 0 -) f i(t -)] = 0
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- )l(t-) + Xl(t9+) =0
19 1 9

- 2(t + x 2 (t +) = 0 , j = 8,7,6,5,4,3,2,1 ,

2
2[X (t -)fi(t-) - A(t.+) f (t +)1 = 0

j = 9,8,7,5,4,3,1

2
21 + [(t 6 - fi(t 6 -) - Xi(t 6 +) fi(t 6 +)] = 0

2
1 + [Xi(t 2 -) fi(t 2 -) - X(t 2 +) fi(t 2 + ) ]  0i=l

3. = lzl(t 9)I - 3 < 0

414 [-l(t4 + xl(t 4 +)] 6b I + [-Xl(t 3 -) + x(t 3 +)

- X1 (t5-) + x1(t5 +)] 6b7 + 2 (0+) 6b8

+ X2(t 4 +) 6 b b + x Tb dt.

The end conditions and jump conditions are

x 2 (tO-)= 0

2

IIl2 [ i (t 1 0 -) fi(tl)] = 0
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-1 - X(t 9 -) + Xl(t 9
+ ) 0

- 2(t-) + X2(t +) = 0 , j = 8,7,6,5,4,3,2,1
2j 2'

2 .[X i(t j f) fi(tj- - xi(t ji + ) f i(t j+)] . 0,
i=l 1

j = 9,8,7,6,5,4,3,2,1

B. Firing from in-battery position.

1. '12- t 10 h1< 0

6 1 2  x 1I( 0 +) b 1 + [-X (tl-) + xl(t +) - X (t 9-)

+ x 1 (t 9 +)] 6b7 + X2 (0 +) 6 b2 + b3

t 1 0
t l  T 3f

+ -x T 6bdt

The end and jump conditions for X1 and X2 are

- xltlO) = 0

2
1 + [Xi(t 10-) f i(t -) - 0

i=l 1

1- X(t 5 -) + x1 (t 5 +) = 0

- X2 (t - )+ x2 (t +) = 0 , j = 9,8,7,6,4,3,2,1
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2 [i(-) f(t.-) - Ai(t +) fi(tj+)] 0

j = 9,8,7,6,5,4,3,2,1

2. 13 =z 1(tl0 h 2 < 0

6 13 = 1 
( 0 +) 6b1 + [-X1(tl -) + x1 (t 1 +) - A (t 9-)

+ Al(t 9
+ ) I 6b7 + A2 (0+)6 (bjb 3 )

ItO )T  Df

+ x AT 6b dt

The end and jump conditions for A and A are
1 2

1 - A(tl 0 -) = 0

2
[Xi(tlO-) fi(tlO-)] = 0i=l 0 11

-1 (t 5 -) + xl(t5 = 0

- A2 (tj-) + x2 (t +) = 0 , j = 9,8,7,6,4,3,2,1

2
2[ A(t -) (t-) - +)= 0

j = 9,8,7,6,5,4,3,2,1

300

I



3. 14 zl(t5)- h 3 
< 0

6 14 x 1(0+)6b I + [- l(tl-)+ xl(tI+) - (t9-)

+ X1 (t 9 +)] 6b 7 + 2(0+) 6 b + b3

t10+ l 10 XT af
+T 6b dt

+10

The end and jump conditions for the adjoint variables

xI and X2 are

- X1 (tl 0 ) = 0

2
[ [ki(t 10 -) fi(t 10 -)] = 0

i=l

- 1- (t 5 -) + 1 (t5+) =0

- 2 (t.-) + 2 (t.+) = 0 , j = 9,8,7,6,4,3,2,1

2 x [i(tj-fi (t -) x i(t i+) fi (t +)] 0

j = 9,8,7,6,5,4,3,2,1
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Table I. Optimal Design, Upper and Lower Bounds, Sensitivity

Coefficients, and Weighting Functions of the

Design Parameters for the Run-Out Case

b b b b b b1- 2 3 4 5 6

upper 20.75 3.1702 0.2872 0.2044 7000 12300
bounds

optimum 20.75 2.919 0.2368 0.2044 6900 12100
design

lower
20.25 2.916 0.2356 0.15128 6800 1.1900bounds

sensitivity -0.2675 -O2654 -0.1586 0.3991
coefficients x1O-  0.1355 0.2841 -01 -1064 --10-5

weighting 0.2596 0.17900.1954 0.5111 1.0 1.0
functions xl00 x10

b7  b8  b09 bo bl1

upper 18.75 60.0 -1900 1700 2100bounds

optimum 18.26 40.35 -1910 1600 2000
design

lower
18.25 40.0 -1.920 1500 1900bounids

sensitivity 0.121L 0.8752 0.6106 0.4176 0.6406
coefficients xiO- 2  x10- 2  x0 - 3  x10- 3  x1O - 4

weighting 0.4511 0.2360
functions xlO 2  \1O+3 1.0 1.0 1.0
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Table II. Optimal Design, Upper and Lower Bounds, Sensitivity

Coefficients, and Weighting Functions of the

Design Parameters for the On-Battery Case

bI  b2  b 3  b b5  b6
1 2 3 b4  156

upper 25.05 3.1702 0.2872 0.2044 7200 14000, bounds

optimum 25.19 3.0919 0.2253 0.2006 6900.0 12100.0
design

lowerbound 23.0 2.9115 0.2250 0.1528 6600.0 11900.0bounds

sensitivity -0.8226 0.7328 -0.6291 0.1294
coefficients x101-  x10-  0 x1O_ 0.0 x10 4

weighting 0.6980 0.8240 0.5780 1.0 0.5185
functions xl0+1  xl0 1  xl0_ 10.1100 1 x10 7

7  8 b 9  10 b11

upper 18.75 0.0 -1600 2200 2200
bounds

optimum 18.27 0.0 -19t0.0 1970.0 2174.7
design

lowerbound 18.25 0.0 -2200.0 1950.0 1000.0bounds

sensitivity 0.3405 0.0 -0.3282 -0.3274 -0.4546
coefficients x10- 2  x10-3  x10-4  x10-3

weighting 0.5869

functions x1.02  1.0 1.0 1.0 1.0
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ABSTRACT

This paper presents a method for optimal desiyn of elastic structures

that are subjected to transient dynamic loads. The finite element method,

modal analysis, and a generalized steepest descent method are employed in

developing a computational algorithm. Structural weight is minimized sub-

ject to constraints on displacement, stress, structural frequency, and

member size. Optimum results are presented for a cantilever beam model of

a gun barrel, subjected to shock input.
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I. INTRODUCTION

Design of a.weapon for precision is a problem of current interest in

modern weapon design. This paper integrates the finite element and gener-

alized steepest descent (11 methods to develop an algorithm for optimal

design of structures under dynamic loads. To date, this problem has

received very little attention, due to its complexity. Complexity in the

problem arises from the fact that stress and displacement constraints for

the structure are functions of both the space and the time variables.

Literature in the area of optimal structural design under dynamic loads

is quite scarce. Pierson [2] presented a survey of optimal structural de-

sign under dynamic constraints in 1972. In this review, dynamic constraints

are classified as constraints on structural frequency and on transient

dynamic response. A minimum of literature exists on the latter class of

problems. Brach [3] considered a class of simply supported beams of con-

stant total mass and minimized the maximum dynamic deflection at the center

of the beam. Plaut [4] and Yau [51 also dealt with optimal design of a

simply supported beam of given total mass, minimizing an upper bound on its

dynamic response. Icerman [6] and Mroz [7] presented optimum designs of

structures that were excited by a single harmonic load. Both of these

treatments, however, are limited to harmonic excitation and cannot be used

to solve the general transient response problem.

Fox and Kapoor [8] used a bounding technique to obtain approximate

peak response of planar truss-frames, subjected to shock loads. They

employed a feasible direction technique of optimization. Levy [9] presented

fully-stressed designs of a rod and beam, subjected to impulsive loads. Ile
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determined maximum stress by setting the derivative of stress with respect

to time equal to zero and checking the total energy of the system at these

time grid points.

It In the present paper, a general method for optimal design of elastic

structures under dynamic loads is presented. Constraints are imposed on

stress, displacement, natural frequency and design variable magnitudes.

The well known modal method of dynamic structural analysis is used to

obtain the dynamic response of the structure. A design sensitivity analysis

method is developed and the Kuhn-Tucker conditions of nonlinear programming

[10] are employed to define an iterative algorithm. The method is then

applied for optimal design of a long barrel cannon.
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II. STRUCTURAL ANALYSIS

Considering the entire structure as a free body and neglecting damping

effects, its dynamic response can be described by the following general

matrix equation [11]:

M(b)z(t) + K(b)z(t) Q(t) , (i)

with initial conditions

-0 0z(0) = i0• (O) = z , (2)

where M(b) and K(b) are mass and stiffness matrices of the structure,

respectively, Q(t) is the vector forcing function, b is a vector of design

parameters, z(t) is a state variable vector of displacements, and t is time.

In all subsequent equations, the stiffness and mass matrices are understood

to be functions of the design parameter vector b, and the argument b will be

omitted. If some of the components of z(t) are known, the solution of the

dynamic equations can be obtained by solving a subset of Eq. (1). Further-

more, the reduced initial conditions can be transformed to homogeneous form

[12). After reductions and transformations, the dynamic equations may be

written as

M0 z(t) + K0 z(t) = Q(t) (3)

and

(O) 0 , z(0) =0 , (4)

where z(t) is an n-dimensional relative displacement vector corresponding

the independent degrees of freedom of the structure and M0  and K0 are the
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corresponding n x n mass and stiffness matrices. Q(t) is a subvector of

Q(t) and is a function of b if the structure undergoes a prescribed boundary

motion.

The eigenvalue problem associated with E . (3) may be written as

M 0 Va- K 0V , (5)

where V is an n x m matrix, whose columns are m eigenmodes of the structure

and Q is an m x m diagonal matrix of the corresponding eigenvalues. The

number of eigenmodes necessary to obtain an approximate solution of Eqs. (3)

and (4) is frequently less than the dimension of these equations, so m < n.

To reduce the dimension of the analysis problem, one introduces a transfor-

mation

z(t) = VC(t) , (6)

where C(t) is a generalized coordinate, or reduced state variable, of

dimension m. Premultiplying Eqs. (5) and (3) by VT , one obtains

M - K =0 (7)

and

M (t) + K (t) S(t) , (8)

with

we (o=0 , (o)=o , (9)

where
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T (0
M V M0 V (10)

K-V K V , (i)

and

T
S(t) V Q(t) (12)

are m x m mass and stiffness matrices cnd a reduced m-dimensional applied

load, respectively. The effect of this substitution is to decouple the

equations into m separate equations. Each equation represents a modal

response to the factored input, V Q(t).

3

1~
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III. OPTIMAL DESIGN PROBLEM FORMULATION

The weight of a truss-frame structure is to be minimized. Thus, the

objective function is

N
J(b) z Pi9iAi (bi) (13)

i~l

where P is the density, Zi is the length, Ai (b.) is the cross-sectional area

of the i-th element and N is the total number of elements.

It is required that displacements and stresses at critical points of

the structure be within specified limits, throughout the time interval

under consideration. These constraints can be expressed as

Jzi(t)1 -z i _ 0 , for all t , i 1,2,...,k I  (14)

and

10 (z,b)I - o.< 0 , for all t , j = 1,2,...,k2  , (15)

where zi and a. are specified bounds on displacement and stress. The

constraint inequalities (14) and (15) can be combined and expressed in a

vector form as

h(z,b,t) < 0 , for all t , (16)

where the inequality applies to each component of the vector function. The

inequality constraint (16) may be transformed to the equivalent vector func-

tional equality
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T

1 (z,b) J [lh(z,b,t)I + h(z,b,t)]dt = 0 . (17)

0

Since h(z,b,t) is a continuous function of t, the integrand in Eq. (17) is

continuous and is non-negative. If any constraint in expression (16) is

violated, the corresponding functional constraint in Eq. (17) is violated

and vice versa. Finally, frequency and design parameter constraints are

expressed as

L U
.< . < W. , j =,2,... ,k3  (18)
J- J- -

and

L U
b < b < b r 1,2,...,k (19)

r - r - r 4

L U
where w. and w. are lower and upper bounds on the j-th eigenvalue and bLi 3 r

and bU are lower and upper bounds on the r-th design parameter. Expressions
r

(18) and (19) can be further combined and written in vector form as

(,b) < 0 . (20)

The dynamic optimal design problem may now be defined as follows:

Find a design parameter vector b that minimizes the cost function of Eq. (13),

subject to the constraints (3), (4), (5), (17), and (20). Let this problem

be denoted by ODPn, where n is the dimension of the state variable. Using

Eq. (6), the constraint functional of Eq. (17) can be transformed into

tT

J J [I h'(,bt) + h'( ,b,t)]dt = 0 , (21)
0
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The problem ODPn can now be transformed into an approximate problem, with

a state variable i(t) of reduced dimension m. One now wishes to find a

design parameter vector b that minimizes the cost function (13), subject

to the constraints (7), (8), (9), (20) and (21). Let this problem be

denoted by ODPm.
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IV. A COMPUTATIONAL METHOD FOR OPTIMAL DESIGN

To take advantage of the structure of the problems ODPn and ODPm, a

state space steepest descent method is employed [10]. The method is related

to the gradient projection technique of nonlinear programming which seeks a

descent direction in the design space. Sensitivity analysis is first em-

ployed to approximate the effect of small variations in design on the cost

function and constraints. Direct relationships between changes in the cost

and constraint functions and a design change 6b are established, by elimi-

nating 6z(t) (or ) and 6w from linearized forms of these functions. A

reduced optimal design problem for 6b is then obtained and solved, using

the Kuhn-Tucker conditions of nonlinear programming.

Analyses of five possible methods of optimization for the solution were

considered in [12]. A method was selected to obtain a balance between

accuracy, effectiveness, and computational efficiency. The basic idea of

this method is to use the modal matrix V to transform the transient analysis

problem, the eigenvalue problem, and the system sensitivity problem to lower

dimensional spaces. The solution of the original problem is then obtained

by back substitution. The method is briefly described as follows: As a

result of a design change, denote

M1 = M0 + 6M0  (22)

and

K = K0 + 6K0  (23)
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Since V is found from Eq. (5), it is not orthogonal with respect to the

perturbed matrices M and K . Define the m x m matrices

T
M' E V M V (24)

and

K' B V K1 V , (25)

the reduced eigenvalue problem is

M' V' Q' -K' V' = , (26)

where V' is an m x m matrix of eigenvectors and Q' is an m-dimensional

diagonal matrix of eigenvalues. The solution of this m-dimensional eigen-

value problem gives the modified eigenvalues and eigenvectors

iV 1 = VV' (27)

of the original problem. That is,

M1 V -1K V= 0 . (28)

The matrix Vt can serve as a transformation to uncouple the state Eq. (8)

after a design change.

After several design cycles, V may loose its effectiveness as a trans-

formation matrix, because the design has changed significantly. The criterion

for recomputing the transformation matrix V is determined by considering the

rate of change of the eigenvalues,

I Wi  - il

ei -V , i =  ,2,...,m , (29)
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rfl- -% -- . . . . .. . 7... .. , - -. r . . - . _-r ~ w ~ - -, .- r

where wo and w. are diagonal elements of R' and s, respectively. If anyi 1
ei exceeds a prescribed limit, a revised matrix V is found from Eq. (5).

At a given design point, one or more constraints may be violated or
C-active [13]. Since design changes are required to be small in the

iterative algorithm, only these constraints are treated in the determination

of a design change--. Denoting the active constraint functionals in Eq. (17)

as 4l(z,b) and active constraint functions in expression (20) as (w,b),

one may combine them in vector form as

IT
I(z,,b) B q(w,b) + p(z,b,t)dt 

(30)
0

where

~0

q(wb) 0 
(31)

and

0P(z'b't)dt E= 
(32)

A typical element of Eq. (30) is denoted by

P(z,w,b) G(w,b) + F(z,b,t)dt 
(33)

The first variation of Eq. (33) is

6 -G (w b) + z T +-F(z+b, t
JaL 3z 3b 6b] dt.

(34)
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In order to eliminate 6z(t) from Eq. (34), one takes the first vari-

ation of Eq. (3), to obtain

D(b,t)
M0 Sz(t) + K0 6z(t) = 3b Rb (35)

in which

R(b,t) = Q(t) -M z(t) - K0 z(t) (36)

6(0) 0 6z(0) =0 , (37)

where the notation "' " above an argument indicates that argument is held

constant for the calculation. Preaultiplying Eq. (35) by the transpose of

an adjoint vector X(t), integrating by parts over the time interval, and

using Eq. (37), yields the identity

xT(T) M 6z(T) - T(T) M 6z(T)

+ (T [xT (t) M0 + xT(t) K0] 6z dtJ0

f T T R(b, t) 6
fT xT(t) D 6bdt (38)

The adjoint vector X(t) is now defined to be the solution of the following

equations:

= (t) + K X(t) t1 (39)

(T) = 0 , X(T) =0 . (40)
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Solutions of Eqs. (39) and (40) can be obtained by modal analysis using the

same eigenvectors employed in solving Eqs. (3) and (4). Once X(t) is

obtained,

T T(t) aR(b~t) dt }b replaces J F(z bt) 6z dt

in Eq. (34), which eliminates 6z from the linearized form of Eq. (33).

In order to eliminate 6w from Eq. (34), one takes the first variation

of Eq. (5). For the i-th equation, one obtains

3[M 0  V b] + [M0  V i i  [M0  Vi  i
]

Oi *b + Q i 6b + -61
3b 3b 3b

3[K i 3[K 0 V]

Vi 6b- 3 6b = 0 . (41)

Premultiplying Eq. (41) by V.T and using symmetry of M and K0 9 one obtains1 0 0

aw. {;[VT K V] 3LVi T o
1m it K0  i~ 1 0 v

6wi 3b- 6b =b 3 b 6b (42)

Collecting all w's, one may form the vector equation

3b6wm- 6b . (43)

The first variation of the functional P(z,w,b) can now be written in

terms of 6b alone, as
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i+

6P = 3G(w,b) __w + 3G(w,b)

aw= ab 3b

TJ (t b + ab dt~ 6b (44

From this result, the first variation of the constraint functional of

Eq. (30) is written as

6 = AT 6b , (45)

where

AT _s(w,b) aw + 3q(wb)
aw b 3b

+ T [X (t )  DR(b,t) + Dp(z,bt)] dt , (46)0f 3b + b

Similarly, the variation of the cost function of Eq. (13) may be'written as

6J = 6b , (47)

where

ab (48)

A reduced optimal design problem for 6b is now stated as follows:

Find 6b to minimize 6J of Eq. (47), subject to the constraints

6,i = AT 6b for all icC , (49)

6(P = AT 6b < - , for all jcD (50)
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and

T 2SbT W6b < 2,(51)

where C and D are the index sets of l(z,b) in Eq. (32) and 42 (w,b) in

Eq. (31), respectively; is a small real number; and W is a positive definite

weighting matrix. The constraint of Eq. (51) is used to ensure a small de-

sign change, as required for validity of the linear approximations employed

in the foregoing sensitivity analysis.

A state space, generalized steepest descent method [10] is used to

derive the algorithm. If the matrix AT in Eq. (46) is of full row rank,

the gradients of all constraint functions in Eq. (30), with respect to design

parameters, are linearly independent. Then, there exist a vector multiplier

i, where >j > 0 for all jeD, and a scalar multiplier v > 0, such that

T

__H_ £j T T TA52
-(b 
=  + jiA+ 2 bT W = 0 ,(2

(A. 6b + dj) = 0 , for all jeD (53)

and

v(6b Wcb -M 2 0 , (54)

where

ST T T T 2
H B Z 6b + T(A b + )+ v(6b W6b - )

The solution of Eqs. (49), (52), (53), and (54) is as follows [1,10,13]:

1 2= + 2vp (55)

321



and

6b -16b + 6b , (56)

where

S -i -1 J= -1 , (57
~i= B A W k (57)

2 B (58)

I

TV i (59)

6b1 =W- 1 (Z J + A1 1 (60)

2 -1 2 (61)
6Sb -W A~i (1

and

T -3
B 5 A W- A (62)

J
Here, 6bI is the projection of the gradient IJ onto the tangent hyperplane

of the constraint surfaces and b2 corrects constraint violations. The

quantity

= 6b W 6bI  (63)

must approach zero as the algorithm converges [1], so it can serve as a con-

vergence criterion. A computational algorithm, may now be stated as follows:

Step 1. Estimate b, and assemble M0 and K0, as in Eq. (3).

Step 2. Construct ODPn and solve Eq. (5).
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Step 3. Use V to transform Eqs. (3) and (4) into Eqs. (8) and (9),

respectively.

Step 4. If control comes from Step 2, let all e. in Eq. (29) be zero and

go to Step 5. Otherwise, solve Eq. (26), calculate e. from Eq. (29),

and compute Q and V in Eq. (27) as new sl and V. Compute M, K, and

S(t) in Eqs. (10), (11), and (12).

Step 5. Calculate z(t) from Eqs. (8) and (9), z(t) from Eq. (6), and

stresses at various points of thF structure. Check constraints.

Step 6. Form (z,w,b) in Eq. (30). Calculate DR(b,t) in Eq. (35)3b

__ in Eq. (43), and Z and AT in Eqs. (48) and (46), respec-3b'

tively. Eliminate dependent constraints from 4(z,w,b) and remove

the corresponding rows from AT .

Step 7. Choose n = - > 0, compute p , p , and V from Eqs. (57), (58) and

(55), respectively.

Step 8. Check the sign of each component of p, corresponding to the constraint

2 (w,b) in Eq. (31). If any of these components are negative,

Tremove the corresponding rows from 4(z,w,b) and A and return to

Step 7.

Step 9. Compute 6b' from Eq. (60) and 116b111 in Eq. (63). If 116bl1 1 is

small enough and all constraints are satisfied, terminate the pro-

cess.
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Step 10. Compute 6b2 and 6b from Eqs. (61) and (56), respectively. Calculate

b + 6b as a new b. Assemble MI and K in Eqs. (22) and (23) as new

M and K0, respectively.F0

Step 11. If all e. obtained in Step 4 are less than a prescribed value,

return to Step 3; otherwise, return to Step 2.

The choice of q in Step 7 is made to seek a given reduction in the cdst

function, normally AJ = -0.01J to -0.10J. With the desired reduction AJ

selected, and ignoring constraint error correction, one may calculate b1

ST 1
from Eq. (60) and substitute into Eq. (47) to obtain AJ =-n JT 6b . Thus,

one obtains n =-J/(Z T 6b ). In effect, one is requesting a given percent-

age reduction in the cost function as the basis for step size selection.

I
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V. NUMERICAL EXAMPLES

A computer program based on the algorithm of Section IV for minimum

weight design of beam and truss-frame type of structures was developed in

FORTRAN IV(H) on an IBM 360-65 computer. The method of subspace iteration

J[14] was used in frequency analysis of the problem.

Example 1: A Uniform Tubular Cantilever Beam Subjected-

to a Shock Input at the Fixed End

A uniform tubular cantilever beam is tipped up at an angle of 30 degrees

to the horizontal. The fixed end is forced to rotate in a prescribed manner,

as shown in Fig. 1. The beam is divided into four elements of equal length

for analysis. Axial deformation is considered, so the system has 12 degrees

of freedom. The design constraints are listed in Table I. The modulus of

6 .3elasticity and material density are 30 x 10 psi and 0.28 lb/in. , respec-

tively. The initial conditions of motion are zero, and the mean diameter

and the wall thickness are considered as design parameters.

The first five of nine eigenvectors, from subspace iteration,were used

in the analysis. The starting design weight was 4.354 lb with frequencies

of 67.20, 419.8, 1,175, 1,706, and 2,294 cps. This design resulted in

1I6blil = 6.225 in the first iteration. The stopping criteria were satisfied

in the nineteenth iteration, where 116bll1 = 3.182 x 106 and no constraint

violation occurred. The final design weight was 2.723 lb with frequencies

of 46.36, 290.1, 814.9, 1,600, and 1,706 cps. The fifth frequency of 1,706

cps corresponds to axial deformation. At the optimum, the maximum vertical

and angular displacements of the free end were 0.582 in. and 0.0308 rad,
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Fig. i. Structure and Load for Example I
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respectively. The maximum stress at the fixed end was 44,700 psi. The

total computing time was 22.50 sec for 20 iterations. Numerical results

are shown in Table II and Fig. 2 (Solution I

This problem was also solved by starting from a different design point

with an initial design weight of 3.958 lb and initial frequencies of 45.25,

283.0, 795.1, 1,561, and 1,706 cps. This design resulted in 1i6blll = 4.082

in the first iteration. At the fifth iteration, 116b'11 = 2.413 x 10 -

The final design weight was 2.671 lb with frequencies of 45.48, 284.6, 799.5,

1,570, and 1,706 cps. At the optimum, maximum stress at the fixed end was

45,200 psi. The total computing time was 9.65 sec for six iterations.

Numerical results are shown in Table II and Fig. 2 (Solution 2).

Example 2: Dynamic Optimization of a Long Barrel Cannon

The problem of design of a precision long barrel cannon is considered

next. The cannon is assumed to be a cantilevered tube with eight radial

ribs of rectangular cross-section evenly space around the circumference to

dissipate heat and stiffen the barrel (see Fig. 3). Heat transfer and

stresses due to barrel pressure are not considered in this analysis. When

the cannon is fired, the impulsive load on the vehicle causes a pitch motion

that occurs at the fixed end of the cannon. It is assumed that the mass of

the vehicle is much larger than that of the cannon, so the dynamic response

of the vehicle is not altered appreciably as a result of a small change in

design of the barrel. The pitch at the base of the gun has both translation-

al and rotational components of motion. The design objective in this problem

is to bound the angular amplitude of motion of the muzzle end of the cannon,

since this amplitude correlates with the accuracy of the cannon. Numerical
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data for this problem are associated with the RARDEN 30 mm, long tube,

precision automatic cannon developed by the British, and the initial con-

0 *0ditions of motion (z ,z ) are taken equal to iero.

The width of the ribs is constant, but the depth 6f the ribs varies as

a quadratic polynomial along the barrel as shown in Fig. 3. Design para-

meters are then taken as the coefficients of this polynomial. Two design

configurations have been studied. One design considers an additional con-

centrated mass of fixed magnitude attached to the muzzle. The other design

considers a similar concentrated mass of variable magnitude attached to the

muzzle as an additional design parameter.

The finite element method is used in the optimization algorithm, and

the constant depth of each finite rib element is taken equal to the actual

depth of the real rib at the middle of the finite element. The barrel is

approximated by ten finite beam elements of equal length, and axial defor-

mation is ignored. The discretized system has twenty degrees of freedom

shown by the arrows in Fig. 3. Design constraints are listed in Table III.

The first six of ten eigenvectors, obtained from subspace iteration,

were used in the dynamic analysis. The problem set-up required 0.41 sec on

an IBM 360/65 computer.

The first design has a four pound concentrated mass attached to the

muzzle. The cost function is the total weight of the tube plus the weight

of the ribs. The fixed weight of the concentrated mass has no effect on

the optimum design, so it is not included in the cost function. The algorithm

was started at a point with a design weight of 46.521 lb. The natural fre-

quencies were 12.02, 64.27, 174.8, 343.6, 571.7, and 860.1 cps. The cost

function reduction ratio AJ was 0.04. The convergence measure 1 16blil was
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19.12 at this point. The measure of convergence reduced to 116b'1 1 3.677

-4X 10 at the eleventh iteration, where the maximum constraint error was 2.8%.

This design is selected because further computation showed constraints were

more severely violated and weight reduction was small. The dynamic response

constraint was active throughout the design process. The final design weight

was 42.16 lb (muzzle mass of 4 lb is not included), with natural frequencies

of 12.21, 62.39, 168.0, 330.0, 549.5, and 827.2 cps. Total computing time

was 30.15 sec for 11 iterations. Numerical results are given in Table IV

and Fig. 4.

The second problem treats the concentrated mass as an additional design

parameter. The system therefore has a total of 4 design parameters. The

design weight is the total weight of the barrel, the ribs, and the concen-

trated mass. The starting design weight was 38.636 lb, with frequencies of

11.93, 66.10, 178.4, 346.4, 570.4, and 851.0 cps. with

AJ = 0.08 and the first calculation yielded 116bl11 = 18.28. The

dynamic response constraint was active in some of the initial iterations

and was active in every iteration after the eleventh. The convergence

criterion was satisfied in the twenty-first iteration, where 116b 11 = 4.75
x0-5

X 10 and all constraints were satisfied. The final design weight was

37.464 lb, with frequencies of 12.11, 66.12, 178.0, 345.3, 568.4, and 847.9

cps. Total computing time was 55.34 sec for 22 iterations. Results are

shown in Table IV and Fig. 4.
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VI. DISCUSSION AND CONCLUSIONS

The state space steepest descent method, with the modal method of

structural analysis and the subspace iteration method for eigenvalue analysis,

has demonstrated an ability to optimize design, with constraints on dynamic

response (stress and displacement), natural frequencies, and design parameters.

The algorithm developed is applicable for general dynamic loads applied

to nodal points of general structures. It does not presently account for

static loading, dynamic buckling, and some other important design factors;

but it can be extended to include them.

Numerical results for two simple examples are presented to show appli-

cability of the method. These results should be considered as preliminary.

The effect of moving masses, thermal loads, time dependent support, and

initial bending of the tube are additional factors that remain to be included

in the analysis.

Numerical results of some additional examples of elastic structures are

presented in [12] and [17]. Recently Cassis and Schmit [18] have also treated

the problem of optimal design of elastic structures under dynamic loads. They

have used the Davidon-Fletcher-Powell method for exterior penalty function

(SUMT) formulation of the problem. Comparisons of the present method with

the Cassis and Schmit technique are not yet available.
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I

TABLE I. DESIGN CONSTRAINTS FOA EXAMPLE I

The verical and angular deflections of the free end must be

less than or equal to 0.6 in. and 0.04 rad., respectively

io(t)I < 45,000 psi , for all t and i

30 < f < 60 < f < 400 cps
- 1- 2-

0.8 < b < 2.0 in. , 0. < b < 0.15 in.
1
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TABLE II. INITIAL AND FINAL DESIGNS OF EXAMPLE 1

Solution 1 Solution 2
Design Initial Final Initial Final

b 1.500 1.032 1.000 1.012
Sl

b2  0.110 0.100 0.150 0.100

Wt. lb 4.354 2.723 3.958 2.671

Time teration 1.13 1.61
sec
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{ TABLE III. DESIGN CONSTRAINTS FOR LONG BARREL CANNON

Design No. 1

1z2(t)I < 0.0004 rad. Vt

0 < h(x) < 0.7874 in. Vx30 < x < 80 in.

Design No. 2

1()I< 0.0004 rad. Vt

0 < h (x) < 0.7874 in. V x30 < x < 80 in.

0 <b 4 < 12.01b
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TABLE IV. INITIAL AND FINAL DESIGNS OF THE LONG BARREL CANNON

Design No. I Design No. 2
Designs Initial Final Initial Final

bI(in.) 1.500 1.577 2.200 1.875

b2  -2.000 -2.266 -2.200 -1.965

b3  0.780 0.7874 0.560 0.515

b4  0.100 0.000

wt. (ib) 46.521 42,160 38.636 37.464

v = 0.0278

violation vI = 0.0336* v, =0.0199

v = 0.0264

Time/It. (sec) 2.74 2.52

* v= 0.0336 implies a constraint violation of 3.36%
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ABSTRACT

This report discusses the use of the NASTRAN finite element program

in the dynamic analysis and modeling effort associated with the Medium

Caliber, Anti-Armor, Automatic Cannon (MCAAAC) development program.

The finite element method (FEM) has been used in the analysis of both

individual components and a simplified version of the entire weapon.

Results range from the static analysis of the barrel to determine

normal rest configuration, to direct dynamic analysis of the entire

weapon over a three-round burst in order to determine muzzle orientation

at time of shot ejection.

The discussion includes the reasons for selecting this method of

modeling, the significant problems encountered in this approach, and

the current status of the effort including results of the analyses.

Also included are present plans for further development of the model

and its uses.
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DISCUSSION OF MODEL

The first thing that must be determined when forming a model is

what actually is to be represented. In this particular case the desire

was to be able to model the basic configuration of the weapon as it

existed at the time of initiation of the effort. This was to include

the receiver with its feeder housing; barrel with its breech coupling,

bolt and bolt carrier; and the barrel return spring with its housing.

But since this was at an early stage of development it was also

necessary to have a model which could readily adapt to changes in

geometry, stiffness, damping, etc. Along with these design variations

in the basic structure, the model would also have to account for

changes in requirements.

Changes in modelling requirements were envisioned to include

increased complexity (such as the cam actuated bolt carrier), provision

for gun - vehicle interaction (requiring the ability to simulate a

-vehicle) and changes in the operation of the weapon (such as a constant

recoil force mode). These are certainly demanding specifications for

a model, especially one that is supposed to be able to describe muzzle

motion throughout a three round burst of fire. At our particular

installation these various requirements appeared to best be met by

using a finite element method (FEM) approach implemented with the

NASTRAN computer program.

NASTRAN was chosen because it seemed to fit most of the require-

ments. It appeared that it could be used to develop the basic config-

uration with little difficulty and then permit changes in any of the

components and their characteristics without altering other portions
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it also appeared that the model could be developed sequentially to

include the envisioned changes in complexity, operation and mounting.

Also in favor of NASTRAN was the fact that it was very general with

six degrees of freedom for most points. This would permit the

analysis to include the vertical and transverse motion of the muzzle

of the barrel and thus provide input for a program used to determine

weapon accuracy.

Since the NASTRAN program is so very general in nature and uses

the direct integration of the equation of motion that it has set up,

it can handle changes in the prescribed time variant loads, as well

as linear and non-linear loads based or. the deflection and motion of

the structure. Such loadings permit relatively good modelling of

contact conditions. NASTRAN also allows for various types of damping

and permits eigenvalue (fundamental modes) analysis of the structure

and its individual components with various support conditions.

NASTRAN has another feature which was seen to be of considerable

importance early in the modelling effort. This is the fact that

NASTRAN is essentially the same at the approximately two hundred and

seventy locations which support the program. Because the program is

so very general, more data is generated, transferred, manipulated,

and stored than in a program written for a specific problem. This

means that any reasonable model would quickly outgrow the capabilities

of Watervliet Arsenal's computer, which is the smallest of those

having NASTRAN, and a larger machine would be needed. However, since

the code is the same all over, all of the development and ground work
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for the model could be done at Watervliet and the outside computer

would only be needed for extended timeframe (full- or multi-cycle)

solutions.

The acronym "NASTRAN" has been used many times in the last few

paragraphs with little explanation other than that it is a finite

element method computer program. This title is derived from the

origin and basis of the program - NAsa STRuctural ANalysis. In the

mid 1960's, NASA saw the need for a general purpose, all inclusive

program based on a unified finite element approach. This program

was to use the best elements and computer methods to solve problems in

the research and development of aerospace and related structures. The

program was to be of modular construction such that at regular intervals

parts of it could be updated without requiring a re-write of the entire

program. The first public version released in 1970 is the result of

five years of work headed by people at Goddard Space Flight Center.

In a most general and simplistic explanation of the program, the

user specifies an array of points (called grid points) in the structure

to be analyzed. The nature of the connection between adjacent grid

points is specified on element cards. The program then uses numer-

ical methods to determine the stiffness between the grid points of

each individual element and the mass associated with each such point.

These values are set up in matrix form. The matrices for all the

elements are then combined to form the set of simultaneous equations

of motion of the defined points in the structure. This system of
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equations is then modified to account for damping, added stiffness,

constrained degrees of freedom and degrees of freedom which are

defined as linear combinations of other remaining degrees of freedom -

that is the boundary conditions.

Given this reduced set of simultaneous equations, the program

can then find the displacements of the grid points for specified static

loads. From the displacements and the individual element matrices it

can find the element stresses. Or from the set of equations it can

determine the normal modes of vibration including complex modes if

damping is present. Or, if a time variant load is given, it will do

double integration in the time domain to determine acceleration,

velocity, and displacement for each degree of freedom. Further interest

in the operation of the program should be directed to the NASTRAN theroy

manual or a text on the method.

Having introduced the intent of the model and the method of

affecting it, it is now possible to go on to discuss particular features

of the model. There are actually five different areas of consideration

in the model; they are 1) loading and constraints, 2) the barrel, 3) the

receiver, 4) the bolt, bolt carrier and cam, 5) the deflection compen-

sating truss and 6) the shock absorbers and dampers. In each of these

sections the requirements on the model can be determined from looking

at the proposed weapon designwhile the ability of the model to meet

these demands can be assessed from the features of NASTRAN that were

employed in the model. To aid in this assessment some description of

the NASTRAN features will be given without, however, going into the
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the theoretical development or the computer implementation. The

NASTRAN Programmer's Manual are available to provide this information

in the depth that it requires. To include a detailed explanation in

this presentation would only serve to bore some readers and confuse

others while not adding materially to how the model was made and

performed.

The first area of consideration is that of the loading and the

constraints (i.e., boundary conditions) to be applied. Since this

is a recoil actuated weapon, it is essentially the breech pressure

acting on the net bore area which causes barrel motion. The time

variant values of breech pressure during projectile inbore travel come

from the computer program used in the weapon design. A gas dynamics

program provides data on the breech pressure during blow down. This

project is not designed to assess radial and longitudinal motion

within the tube wall (although that has been shown to be possible) so,

therefore, the pressure distribution within the tube is not used.

Torsional motion of the barrel is not considered, either, since the

relation between projectile acceleration and the loading of rifling

is still unknown.

This loading is accomplished in NASTRAN by the use of a TLOAD

card. This card references a TABLED card and a DAREA card such that

at any time in the solution the tabular value as determined from the

former is applied to a degree of freedom specified on the latter

multiplied by the coefficient there stated. This procedure allows the

breech pressure versus time data to be defined as a table to any degree
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of precision required; that is, the increment of time used in the table

can be made as small as necessary to define the bheavior. During the

solution, the NASTRAN program will do linear interpolation between the

specified data points as necessary. By use of the coefficient on the

DAREA card, the definition of the net bore area can be kept separate

from the definition of the breech pressure allowing easy alteration of

either one. For the simulation of a multiple round burst of fire, the

table entries are just repeated with the addition of the appropriate

time interval. Since the ballistic pressure is the only outside force

driving the weapon, these free items are all that are needed to define

the loading.

It is envisaged that the weapon may be mounted on several different

vehicles and most likely in a constant recoil force mode on one of

them. The structure which transmits the forces of the gun to the

vehicle (and the vehicle forces to the gun) have not been designed and

therefore have not been included in the model. To provide some form

of constraint to the model, all the grid points on the bottom of the

receiver were held fixed in all six degrees of freedom. These single

point constraints, as they are known in NASTRAN, lock the receiver to

the frame of reference. It is then possible to have tne program print

out the -action forces at each such point as a function of time. This

information will be useful in designing the vehicle mounts.

The most important component of the weapon is the barrel, Ziice

all other items are there to support the barrel as it guides and

launches the projectile. It 's the barrel which undergoes the largest
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deflections. Also, the intent of this modelling effort is to provide

values of muzzle motion to be used in an exterior ballistics program

in an attempt to assess weapon accuracy. It is because of these

requirements that considerable effort was expended to determine the

extent to which NASTRAN would be able to approximate the behavior of

the barrel in a dynamic response situation. To assist in this evalua-

tion and in the preparation of the model itself, an auxilliary program

was created (using FORTRAN IV) which would generate all the necessary

cards for a finite element representation of the gun tube based on

NASTRAN's BAR element.

The BAR element is a metric element which encompasses extension,

torsion and bending properties. (The ROD and TUBE elements were not

chosen as they fail to include bending.) The BAR element is the most

mathematically complete element of the NASTRAN program, a fact that

has been demonstrated repeatedly. This completeness is based on three

assumptions (1) the element is initially straight, (2) it is unloaded

except at its two ends, and (3) its properties (cross section area,

area moments of inertia, etc.) are uniform along its length. Because

a gun barrel is designed to be essentially straight and because there

is no attempt at an interior ballistic analysis which might demand a

distributed pressure load, the first two criteria are met. The third

assumption is accounted for in the FORTRAN program by integrating the

properties of the element over its assigned length and then normalizing

with respect to the length rather than simply averaging the properties

of the element at its two ends. Using the output of this program as
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input, NASTRAN was used to generate results which were compared to

experimental values for an M68 Tank Cannon.

The comparison was of both a static and a quasi-dynamic nature.

The static portion was accomplished by adding to the tube elements the

lumped masses (complete with offset centers-of-gravity) for the breech

ring and the bore evacuator assembly and executing NASTRAN's Grid

Point Weight Generator. The NASTRAN results were a total barrel weight

of 2521 pounds and a center of gravity of 54.80 inches forward of the

rear face of the gun tube. This compares very well with average measured

values of 2492 pounds weight and 54.83 inches for the c.g.. These are

errors of only 1.2% and .05% respectively, when compared to measured

values. The quasi-dynamic analysis involved the comparison of calculated

normal modes of the barrel with those measured during actual gun firings.

The first frequency of vibration had a measured value of about 26.3 cycles

per second and the calculated value was 26.7 cps. This is an error of

only 1.5%. Later in the recoil cycle the barrel has an altered support

condition such that its frequency becomes about 8.4 cycles per second.

When these support conditions are applied in NASTRAN, the result is a

frequency of 8.6 cps. The closeness of these results were sufficient

to encourage the modelling effort and to provide confidence in the output

of the FORTRAN program.

As a 'further check on the expected performance and as a test to

determine the number of BAR elements required, two models of an early

gun tube design were made - one using sixteen elements and one using

sixty-four elements. The two models were constrained in cantilever
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fashion from the breech end and had a static load applied at the muzzle.

The muzzle deflections varied by less than four percent. The eigen-

values were extracted for the two models with the one having four times

the total number of modes as the other. For those modes which were

present in each model the correspondence was remarkable - within two

percent (and usually less) at almost every frequency. Since it was

known at the start that this model was to be a rather loose approximation,

the sixteen element representation was chosen. Later it became necessary

to locate two additional grid points on the barrel so that two of the

elements were each divided into two parts with the element properties

recalculated. This eighteen element representation is the way the

barrel model has remained.

The receiver is the second most massive portion of the weapon.

It is basically a rectangular structure fabricated from steel plate.

Fine features of the model such as weld fillets, bearing blocks and

surfaces, attachment lugs, etc. were not considered for the model.

Such refinements could be added at a later time if the behavior of

the model indicates that such items could show up in the results. With

the exclusion of such details it becomes relatively simple to represent

the receiver as a collection of quadrilateral and triangular plate

bending elements - NASTRAN's QUADZ and TRIAZ elements respectively.

These metric elements are designed to handle inplane tension, compres-

sion and shear and out of plane bending of a homogeneous, isotropic

material (Fig.l.).
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Attached to the side of the receiver is a structure which contains

the feeder mechanism which itself contains a three round clip of

ammunition. The external configuration was somewhat defined at the

start of the model construction but with the interior details not only

vague but of questionable value to the model, just as the interior

details of the receiver. So to account for the additional mass of the

feeder and ammunition, a non-structural mass density was specified in the

definition of the top and bottom plates of the feeder housing (Fig. 2.). This

parameter specifies an area mass density to be included with the normal

calculation which is based solely on the thickness of the element. The

value of the coefficient was set to reflect the total mass of two rounds

plus a percentage of the basic feeder housing.

Bolted to the front of the receiver and coaxial with the barrel is

a cylindrical steel sleeve surrounding the barrel return spring which

is also coaxial with the barrel(Fig. 3). At the front (muzzle end) of the

sleeve is a rather massive steel collar which acts as a bearing surface

during recoil motion of the tube. Thus the sleeve not only covers the

barrel return spring but also acts as a barrel support. The sleeve

itself is modeled as a series of Bar elements because the BAR element

can be defined to have the same properties (area, moments, etc) as the

sleeve which is acting primarily in a bending mode. The mass of the

collar is accounted for by a concentrated, lumped mass (CONMZ) at the

end of the series of BAR's representing the sleeve.
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The support condition between the weapon barrel and the steel

collar is modeled by a NASTRAN constraint feature - the MPC or multi-

point constraint. This feature provides that the motion of a degree of

freedom is directly related to one or more other degrees of freedom

according to the coefficients defined by the user. Using this capability,

a point that at rest is slightly forward of the collar position and at

full recoil is slightly rearward of the collar, is defined to have the

same vertical and horizontal displacement as the grid point representing

the location of the collar. A point at the rear of the barrel is

similarly associated with points on the sides of the receiver where

support rails are located in the real weapon. It is obvious that such

a definition of support conditions does not account for the accumulative

effect of tolerances commonly referred to as play. To include such

non-linear behavior would have added undue complexity to the model and

would have required a measurement of the play which was not possible.

The barrel return spring is actually a large coil spring which is

around the barrel with one end compressed against the receiver and the

other forced against a collar locked to the gun barrel. In the normal

rest position there is a considerable preload in the spring. The spring

itself is modeled by a series of NASTRAN elastic spring (ELAS) elements

with concentrated masses at the modes between the elements. The

elastic elements represent simple scalar springs which act only on one

degree of freedom to resist the rigid body motion of the gun barrel in

recoil. These elements were chosen because they are not metric elements

and therefore have no material representation which in NASTRAN is
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based on small displacement theory. A series of elements is used so

that the lumped masses at the series of modes will provide some sort

of distributed mass for the barrel return spring. This effort was

deemed necessary in light of the fact that the real spring weighs

one-hundred and twenty-five pounds.

The preload in the spring is modeled by simply specifying its

reaction forces on the receiver and the barrel. This is accomplished

by requesting a time dependent load (TLOAD). This load is defined by

a Table which specifies a value constant in time and a DAREA which

directs the load to be applied to the receiver and barrel with the

correct magnitude and directions.

Another portion of the weapon which received considerable attention

is a part of the internal workings of the receiver comprised of the

bolt, bolt carrier and cam. The breech closure of the barrel is

accomplished'by an externally threaded cylindrical plug (the bolt)

which is inserted into the opening in a cylindrical coupling affixed

to the rear of the gun tube. This coupling behaves as part of the

tube and is included in its representation. This bolt is supported

and controlled in rotation by a bolt carrier which recoils in the same

line of action as the barrel. In the actual operation of the weapon,

when the barrel recoils, a lever on the carrier engages a cam on the

side of the receiver forcing the bolt to rotate and unlock and then

accelerating both the carrier and the bolt rearward away from the barrel.

The acceleration forces the carrier rearward against a compression

spring until it is latched and held awaiting release. Upon release,
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it is driven forward, advancing a round of ammunition into the chamber

and locking the bolt. Since this is a recoil operated weapon, energy

is transferred from the barrel to these moving parts through the

action of the lever and cam and it was wondered if NASTRAN could model

this energy transfer.i
A model of this action was constructed by using a NASTRAN multi-

point constraint (MPC; described previously) between a point with

lumped mass representing the carrier and bolt, a point on the breech

end of the barrel and a third point separate from the physical repre-

sentation of the model. Since the -design of the cam had determined

a table of values relating barrel recoil distance and carrier -

barrel separation, this tabular data was entered directly into NASTRAN

via a TABLE card. A non-linear load was then defined which applied a

load to the separate point (which was supported by a scalar spring) to

enforce the desired deflection. The MPC thus caused the displacement

of the carrier to be the total of the barrel and the separate point

displacements. Since the scalar spring of the separate point was

several orders of magnitude greater in stiffness than either the

barrel return spring or the bolt carrier spring, the interaction and

energy transfer between these two parts was effected by this use of

the MPC. In spite of this success, it was decided that this phase

was too complex to be incorporated into the early multi-round model

and so only the lumped mass of the bolt and carrier was retained

along with the carrier spring.
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A very prominent portion of the weapon, the deflection c6mpensating

truss, was actually very simple to model as a collection (Fig. 4.)'of BAR

elements. Once assembled, its stiffness at possible points of forward

tube support were calculated with a single NASTRAN run. The affect 6f

these support conditions on thenormal modes of the barrel were then

evaluated in an attempt to determine the best locations and the final

modal behavior of the weapon.

The final portion of the weapon to be described seemed very trivial

at the start and end of the effort but in the middle caused considerable

anguish and delay. NASTRAN provides for the direct specification of

viscous type damping (DAMPi card, i = 1-4) between degrees of freedom.

It is very easy to thus represent the main recoil buffer (Fig. 5.) which is

attached to the rear of the barrel and the front of the receiver and

works in both recoil and counter recoil modes. However, a very impor-

tant part of the operation is the counter-recoil buffer which only acts

over the last five inches of counter recoil motion. This prevents the

barrel from slamming iito the receiver at high speed and yet allows

rapid cycling of the barrel. A detailed scheme was devised to define

the model equivalent of this real life situation.

The intent was to use a non-linear load which is a linear function

of the product of two displacements (NOLIN2). One of these would be the

displacement of a separate point supported by a scalar spring which

would be deflected to unit value when acted upon by a tabularly defined

non-linear load (NOLINI). The table would only have non-zero value
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for barrel displacements of less than the required five inches. The

other displacement would be of a separate point, too, but one where the

displacement would be proportional to the positive velocity of the

barrel. This would be accomplished by loading the separate point with

a third type of non-linear load (NOLIN3). This type defines a load as

an exponential function of the displacement of a degree of freedom but

only when it is a positive displacement. The displacement used to

define this load must then be equal to the velocity of a point on the

breech of the barrel. And NASTRAN has a very simple means of defining

this equivalence called the transfer function.

The transfer function (TF) allows the user to define a linear

relationship between the displacement and/or higher order time

derivatives, of it for a grid point and the displacement of an extra

point (EPOINT) added for just this purpose. This procedure was tried

on Watervliet's IBM computer with disasterous results as large

oscillations of barrel motion built up. Several variations of the

same arrangement were tried with the same results. The NASTRAN office

at Langely, AFB could give no explanation. A test deck with twelve

different combinations of derivatives defined by twelve different

transfer functions was tested. Some results were reasonably good

while others (those that related derivatives of unequal power) were

not. A single case was tried on the NAVY's CDC computer at NSRDC

and appeared to work. So the trouble was attributed to NASTRAN's

use of a mixture of single- and double-precision subroutines on the

356



IBM computers. Since the size of the model (particularly the number

of integration time steps) required that the final form be ruT' on' the

larger CDC computer of the NAVY, the last obstacle appeared to'be out

of the way.

But when the problem was first run to check it out on the CDC

machine, the same problem showed up after about one hundred time

steps. The rate of growth of the problem was smaller but it was still

there. The solution became very simple, however, when it was learned

that the version of NASTRAN at NSRDC had been modified to allow non-

linear loads to be based on velocity directly by simply adding ten to

the associated degree of freedom when listing it on a NOLINi card.

This enabled the counter recoil buffer to work as originally intended.

The model was run on NSRDC's computer for about sixteen hundred'

integration time steps which simulated a three round burst of fire.

Data for various portions of the finite element model are shown in

Table 1. Plots of some of the output are shown in Fig8. 6 - 11.

Since the structure has not been fully assembled, let alone fired,

it is impossible to provide real data for comparison. It does appear

from the data of muzzle motion that the weapon may be reasonably

accurate but that the interval between firings may have to be adjusted

to reduce dispersion. Current plans call for static and modal testing

of the assembled weapon when available for comparison to NASTRAN.
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The model itself is being updated with the inclusion of damping

on the horizontal and vertical motion of the structure. The values

to be used for damping are currently being determined from the

comparative testing and modeling of an M68 Tank Cannon. The version

of NASTRAN at Watervliet Arsenal has been modified to provide the

critical non-linear velocity dependent loads and to run this problem

as a series of successive segments of the overall integration time span.

Further improvements in the model are anticipated to be inclusion of

the bolt, bolt-carrier, and cam operation and an approximation of the

mass transfer of the feeder mechanism. The model will be altered to

include a constant recoil force mode and also mounting on a vehicle.
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CONCLUSION

It has been shown that the finite element method as implemented

by the NASTRAN computer program is capable of modeling weapon compo-

nents with considerable accuracy. This has been demonstrated both

by other user's success with the same elements and in certain protions

of the development of the weapon model. It has also been shown that

the user does not have to be directly involved with the analytical

calculations of the model once the assumptions involved with the

features of the program are understood and met. This approach to

dynamic modeling can lead to a report lacking in mathematical

expression but still containing results. In such an approach to

modeling the actual physical dimensions become of secondary impor-

tance compared to the distinct features of the weapon and the means

chosen to represent them. This particular model has shown that it

can be used to represent a three round burst of fire. The final

determination of accuracy awaits completion of the weapon and its

initial testing.
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TABLE 1- WEAPON PARAMETERS

Barrel Dimensions

Length 229i0-inches

Maximum Outside Diameter 8.7 inches

Minimum Outside Diameter 3.7 inches

Bore Diameter 2.4 inches

Weight 2050. pounds

Coupling Weight 220.0 pounds

Return Spring Weight 125.0 pounds

Bolt Carrier and Bolt Weight 65.0 pounds

Receiver Dimensions

Length 62.0 inches

Width 10.0 inches

Height, Maximum 18.5 inches

Weight 1550.0 pounds

Maximum Height of Truss

Above Receiver 24.0 inches

Above Base Plate 42.5.inches
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Figure 1. TrHE RECEIVER
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Figure 2. THE RECEIVER
WITH FEEDER HOUSING
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Figure 3. THE RECEIVER
WITH BARREL
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Figure 4. THE TRUSS
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Figure 5. THE COMPLETE
MODEL
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ABSTRACT

RADIAL AND TRANSVERSE RESPONSE OF GUN TUBES BY THE FINITE ELEMENT METHOD

Previous work published by the author is reviewed treating

several problems associated with in-bore ballistics and a limited

comparison with experimental work accomplished more recently is also

given.

The most ambitious work involves computation (via NASTRAN) of the

radial response of a tube bore to travelling ballistic pressure. Tube

geometry and ballistic pressures corresponding to the 175mm M113 gun

tube were followed very closely. The computation employed an integra-

tion time step small enough to predict vibration activity as high as

20 khz - the upper limit of typical tape recording equipment. While

such a time step leads to an inordinate amount of computer time, all

results were achieved in a single computer run leading to a finely

detailed set of response graphs at many stations along the tube.

Comparisons with later test firing records show remarkably good agree-

ment considering the limitations of the 250 degree of freedom model.

Results indicate that the Lame' design formula used for tube design

trrt on thL-gvbfafe 9Vde, stresses being greater than those predicted

by this formula. The high state of vibrational activity actually

evidenced in test records is predicted in the NASTRAN results.

Another study estimates the response of this slightly curved

175mm tube when exposed to the ballistic pressure function - the term

'Bourdon load' being coined in the process. Muzzle response in the
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vertical plane is predicted as a function of time up through shot

ejection. Further work develops the finite element technique for

handling the moving mass aspects of the problem, treating the

projectile as a moving point mass. A sample application of this work

compares results with the only experiments of record - those of Ayre,

Jacobsen and Hsu. Very good agreement with these results was obtained

using only a few finite elements. Finally, a systematic derivation

governing transverse tube motions is de'ived and incorporates the most

comprehensive load set to date.
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CHAPTER ONE

Section I of this chapter presents the radial displacement response

of a 175mm (M113) bore surface to firing as computed by the method of

finite elements. Experimental test firings of record are also offered

for comparison. Section II employs a second finite element model to

explore the transverse response (vertical plane) of an initially curved

tube following a sudden internal pressurization. Both Sections I & II

of this chapter employ the NASTRAN finite element code and no recognition

is given to the presence of projectile mass. In Chapter Two, however,

it is shown how the method of finite elements may be used to account for

inertial effects induced by the projectile as a moving mass. NASTRAN -

it turns out - is unsuitable for this purpose, however, and a special

finite element code was necessary.

SECTION I - FINITE ELEMENT RESPONSE OF A 175MM (M113) GUN TUBE

TO BALLISTIC PRESSURIZATION

Statement of the Problem:

Tile problem is defined as follows:

An isolated 175mm gun tube, open at each end and unsupported or

unconstrained in any way, is loaded along its interior bore surface by

radially applied interior ballistic pressure. In addition, the rearward

thrust of the ballistic pressure is applied axisymr,;etrically over the

breech end of the tube. (No account of the breech-plug' is included.)

Tile ballistic pressure input to the problem is computed from FORTRAN

program, IBAL, authored and refined at Watervliet Arsenal. The loading
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(and geometry) is fully axisymmetric and can be conceived as

a time-variant pressure following the motion of a fictitious

projectile. Other than defining the region of pressuriza-

tion in time, the 'projectile' has no additional purpose or

properties. -No tructural damping or temperature effects

are included in. the problem and the primary objective is

to predict the radial displacements of the bore surface in

response to the ballistic pressure load.

NASTRAN Problem Definition:

From the problem as defined above, the NASTRAN formula-

tion is composed. As in any finite element technique, the

body of interest is divided into a number of elements each
of which deforms according to a general law when either

forces or displacements are prescribed along portions of

its boundaries. This deformation law is not completely

arbitrary in that the deformation must retain continuity

across the boundaries between elements and furthermore

the explicit formulation of the law should satisfy some

principle of mechanics - such as virtual work, minimum

energy, etc.

In the NASTRAN model for the 175mm tube, 62 trapezoidal

ring elements are utilized - creating a problem of 250

degrees of freedom. These ring elements (see Figure 1)

are axisymmetric and can only be used in cases where the
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applied loads and deformations are also axisymmetric.

Consequently any transverse deformations of a gun tube

during firing must be treated using elements of a differ-

ent type. The latter of course, fall beyond the scope of

work to be reported in this section. In Section Ii how-

ever, some of the rudimentary aspects of transverse tube

behavior are treated.

The discretization of tube geometry is rather straight

forward and is shown in figure 2. Bore stations or Grid

Points, are listed in Table I. Discretizing the load -

which is travelling along the bore at projectile velocity -

is not as simple and presents some unusual and interesting

considerations.

The ballistic load function falls within the general

category of travelling loads. Each element of' the finite

element model therefore, receives in turn a time-variant

loading. While this in itself is not an unusual condi-

tion to be modeled by Nastran, the matter of transforming

a continuous pressure distribution to discrete loads acting

at the element attachments, i.e., the Grid Points, creates

a bit of a problem. In statics for example, the engineer

may discretize a pressu-re distribution by some intuitive

averaging procedure, perhaps with the aim of preserving

force or moment equipollence at some particular station.

In finite element theory however, there is only one
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TABLE I

BORE STATIONS

(GRID POINTS)

Grid Distance Distance Grid Distance Distance
Point from from Point from from
No. Muzzle Breech No. Muzzle Breech

1 413 0 64 203 210
4 406 7 66 196 217

7 399 14 68 189 224
10 392 21 70 182 231
12 385 28 72 175 238
14 378 35 74 168 245
16 371 42 76 161 252
18 364 49 78 154 259
20 357 56 80 147 266
22 350 63 82 140 273

24 343 70 84 133 280
26 336 77 86 126 287

28 329 84 88 119 294
30 322 91 90 112 301

32 315 98 92 105 308

34 308 105 94 98 315

36 301 112 96 91 322

38 294 119 98 84 329
40 287 126 100 77 336
42 280 133 102 70 343
44 273 140 104 63 350
46 266 147 106 56 357
48 259 154 108 49 364
50 252 161 110 42 371
52 245 168 112 35 378
54 238 175 114 28 385
56 231 182 116 21 392
58 224 '189 118 14 399
60 217 196 120 7 406
62 210 203 122 3.5 409.5

124 0. 413
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procedure that is consistent with the finite element formu-

lation per se and even this procedure is only correct when

the loads are statically applied. For dynamic loading

conditions there is no truly consistent procedure for

discretizing continuous load distributions. In view of

this fact and the approximate nature of the assumed linear

displacement function by which an element is forced to

deform, it is questionable as to how far one can trust

the conventional procedure of producing statically con-

sistent discrete loads to replace the pressure distribu-

tion. (The displacement function is directly used in this

procedure).

In view of these arguments it seemed expedient and

justifiable to describe the travelling load intuitively,

rather than to work through the statically consistent

procedure. Only after the final computer run was performed,

was time taken to compare the two methods of load descrip-
,

tion. As it turned out the loads calculated by either

procedure differ by an average amount of only 8.3% and

the total load applied to an element at any given time

is the same by either calculation. Discontinuities in

loading rate, present in the intuitively derived load

functions, may tend however, to favor the excitation of

natural frequency vibrations in the results.

See Comparison, Appendix A.
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Load Definition:

Along with each of the grid points to receive a load,

we assign a domain of load definition. If the ballistic

pressure (at some point in time) is applied over all or

part of the bore surface contained within this domain,

then the corresponding grid point receives a load. The

value of the load is made proportional to the fraction of

the domain exposed to the pressure. In the NASTRAN model

the domains of each loaded grid point extend between, the

mid-planes of the trapezoidal elements as shown in

figure 3. Thus as the 'projectile' (i.e., the ballistic

pressure) arrives at a location midway between say, Grid

Points 42 and 44, a load begins to build at Grid Point'44.

The load at all times will be proportional to the amount

of penetration into the domain ...x/k where Z is the length

of the grid point domain of Toad definition.

In practice the grid point loads are tabulated vs.

time and because of their number and irregular character,

a great deal of load data is required for an accurate

modeling of the load condition.

NASTRAN SOLUTION FORMAT

The transient response in the radial direction is

sought at stations along the bore axis of the tube. In
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NASTRAN one has a' choice of two transient response formats...

Rigid Format Number12 entitled. "Modal Transient Response"

and Rigid Format Number 9 - "Direct Transient Response".

The former is more approximate than the latter unless all

of the vibration modes are employed in the solution in

which case the two formats involve virtually the same

amount of computation. If a modal transient response

calculation is to be made, the user must be sure that enough

modes are employed to yield the accuracy demanded. Because

of the spatial distribution of the instantaneous load applied

to the 175mm tube, a modal transient response calculation is

not practical since an accurat2 descri-ption of the deforma-

tion of the bore surface would require a large number of

eigenvectors - even though their corresponding frequencies

may remain virtually unexcited. The only other choice is

therefore to actually integrate the two-hundred and fifty

coupled equations of motion - NASTRAN's Rigid Format

Number 9

The main decision to be made in using the direct

integration algorithm concerns the choice of the time step

to be used in the numerical integration procedure. Even

though the algorithm employed by NASTRAN is 'Unconditio'naly_

stable (i.e., no unbounded quadratures will result) gross

errors will result unless the time step of integration is

1BURTON, R., Vibration and _Ipac (1958), Addison-Wesley,
p. 261.
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chosen sufficiently small. Since one is generally seeking

the integrations over a specific time length, i.e., the

ballistic period, smaller time steps imply a corresponding

increase in the number of iterations required. This in

turn is limited by available funds and computation time.

The time step for this problem was chosen on the basis of

the largest loading rate present in the problem. Since

this loading rate is nearly proportional to the projectile

velocity, the rate will achieve its greatest value near

the muzzle where the load varies from zero to full value

in roughly 250 microseconds. To describe this load in

fine tabular detail, minimizing sharp 'corners' or discon-

tinuities, the time step was chosen as 10 microseconds.

Such a time step would also clearly define any response

as high as 15 khz. It can also be shown that a time step

of this value is sufficient to predict a response over 36

periods of the lowest natural frequency with an error not

exceeding 10% in amplitude or phase in all frequencies up

to ten times the fundamental. For details of this appraisal

the reader is invited to examine section 11.3 of the NASTRAN

Theoretical Manual.
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MATERIAL PROPERTIES AND INITIAL CONDITIONS

Only the simplest material properties were assumed for

the model:

E = Young's Modulus = 30 x 106 psi

v = Poisson's Ratio = 0.3

The initial conditions of velocity and displacement are null.

PROGRAM OUTPUT

Of the 124 grid point locations defined within the

NASTRAN model of the 175mm tube, radial displacement and

load output was requested from 32 of the 61 grid points

along the bore surface. The output was requested on magnetic

tape as well as 35mm film - ready for slide mounting. 8-1/2"

x 10" plots were made from this film and the corresponding

X-Y data printed from the magnetic tape. The printed output

for the problem solution is quite voluminous and therefore

only seven load and response curves will be presented in

this report - four for discussion purposes and three for

comparison with instrumental test firings at Aberdeen and

Yuma Proving Grounds. The loads and responses at these

points are generic to the extent that those at other bore

stations can be understood in similar terms.

DISCUSSION - Grid Point 10

Figure 4 shows the pressure (lower curve),and displace-

ment as functions of time at Grid Point 10 located in the

breech, to the rear of the projectile at all times. Super-

posed is the displacement as conventionally computed for

384



design purposes via the static Lame solution.2 This

solution corresponds to a uniformly pressurized, infinitely

long uniform tube of cross section equal to that at the

grid point under discussion, i.e. GP 10.

One first notes that due to its location aft the pro-

jectile, GP 10 receives pressure continuously and smoothly

from time zero. Consequently the rate of load application

at this station is only dependent upon the rate at which the

burning propellant produces pressure and not on the velocity

of the projectile (except possibly in a very secondary way).

Thus the rate of load application at GP 10 is not nearly as

severe as that at grid points located further along the bore.

The next item of note is the increasingly apparent

excitation of a natural frequency of approximately 2600 hz

as time continues through the ballistic period. We will

see later that this frequency agrees quite well with.the

observed frequency of 2380 hz in the BRL records. In that

no structural damping has been included in the model, one

is not surprised that the predicted frequency is somewhat

higher than that produced during these actual test firings.

Superposed on the 2600 hz frequency is a 'beat' whose

frequency is estimated at about 130 hz. Fhis beat fre-

quency appears at different values as one observes from

stations fuither along the bore. At GP 56 we estimate

this frequency at about 400 hz and at GP 64 - 600 hz.
2ROARK, R. J., Formulas for Stress and Strain, 2nd Edition,

McGraw Hill Book Company, Inc.
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The production of beats suggests that several natural

frequencies exist close in value to the observed 2600 hz

vibration. To determine if indeed this is the case, a

NASTRAN eigenvalue analysis was applied to the finite

element model. The results are shown in figure 5 in the

form of a frequency density distribution. Together with a

plot of projectile velocity versus bore travel (figure 6)

one not only gains insight to the production of beats but

also the reason for the observed vibrational behavior at

about 2600 hz.

As figure 6 shows, the projectile velocity exceeds

2600 ft/sec. ov-er the latter half of bore travel. Veloci-

ties of this magnitude are clearly sufficient to create

Grid Point loading rates large enough to excite natural

frequencies in the neighborhood of 2600 hz, i.e., the

observed vibration. That there indeed exist a multitude

of frequencies near this value is born out by the fre-

quency density plot which shows no less than 17 natural

frequencies between the values of 2400 and 2800 hz. All

of these are excitable by the projectile velocity which

exists throughout.the latter half of bore travel and

easily combine to form the observed beat phenomena.

The existence of beats has physical significance in that

a beat amplitude surpasses that of either of the amplitudes

of the component vibrations.
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A third point of interest is the comparison between 
the

response predicted by the Lam6 solution and that from the

NASTRAN model. The Lame response is conservative in that

it exceeds the time-averaged dynamic response. The expla-

nation is that the Lame problem assumes the pressure to be

uniform throughout the entire length (infinite) of the

tube. In reality - and in the NASTRAN model - the pres-

sure only exists of course, in the region to the rear of

the projectile. The non-pressurized region in front of

the projectile tends to assume its unloaded configuration

exerting a contractile effect on the region to the rear

of the projectile. Only when there exists a considerable

input of kinetic energy to a vibration mode of period

close to the rise time of load application, will the Lam6

peak displacement be exceeded. It is evident that this.

condition is not fulfulled at GP 10. We shall witness

different behavior further down-bore.

Grid Point 24

Figure 7 shows the pressure (lower curve) and .displace-

ment at GP 24, not far in front of the projectile prior 
to

firing. The distinctive feature as compared with GP 10 is

the time delay prior to load application at this station.

During this delay period a negative, i.e., inward, radial

displacement occurs at this grid point. This is caused by

the existence of adjacent pressurized and nonpressurized
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regions. The Lamg counterpart cannot of course predict

such a displacement since all regions of the tube are

assumed uniformly pressurized.

[At approximately 6.5 milliseconds following ignition,

the 'projectile' passes GP 24 exposing this portion of the

surface (i.e., the load domain of GP 24) to the pressure

of the propellant gas. Thus the initial time rate of load

application at this station is 'determined almost wholly by

the value of the projectile velocity at this time rather

than the propellant burn characteristic as at GP 10.

In all other respects the response at Grid Point 24 is

similar to that previously described at Grid Point 10.

Grid Point 72

Figure 8 shows the pressure (lower curve) and displace-

ment - Nastran and Lamd - at Grid ,Point 72, located roughly

half way down the tube bore. As at GP 24 we observe a

negative displacement until the projectile passes the

station approximately 15 milliseconds following ignition.

At this time the projectile possesses a rather large

velocity creating a rapid time rate of pressurization

at this location. The rate is great enough to appreciably

excite the observed natural frequency (approx. 2600 hz),

causing a peak response 35% greater than that predicted

by the Lam6 solution.
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Grid Point 120

Grid Point 120 is only 9 inches from the muzzle end of

the tube. The maximum pressure (figure 9) is seen to be

roughly half that at GP 72. Consequently, the negative

radial displacement prior to the arrival of the projectile

is correspondingly less. The high velocity of the projec-

tile, however, causes great excitation of the 2600 hz

natural frequency oscillation. This results in a NASTRAN

radial displacement which eceeds the static Lame

computation by nearly 50%.

Again we observe a strong 'beat' at this grid point.

To what degree such beats are actually realized in

practice is clearly a matter which should be determined.

COMPARISON WITH PREVIOUS TEST FIRINGS OF RECORD

The NASTRAN model of the 175mm tube was formulated and

computer-executed prior to the examination of any particu-

lar experimental results. With the NASTRAN-predicted

response in hand, a request for experimental results of

test firings was made to Mr. Herman Gay of the. Ballistic

Research Laboratoi'ies, Aberdeen, Md. Mr. Gay recommended

BRL Technical Note No. 1722 authored by Mr. John M. Hurban

in September 1969. Mrs. Joyce Mayo of the Watervliet

Arsenal Technical Library was quick (as always) to p)rovide

a copy of this report.
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The BRL note reports on the response of strain gages

mounted on the exterior surface of a 175mm gun tube. This

tube differed slightly from that used for the NASTRAN model.

The presence of a breech and tube support created further

dissimilarities. Nevertheless, surprisingly close agree-

ment was achieved wherever quantitative and qualitative

comparisons could be made.

Figure 10 shows the strain gage response to the firing

of a zone 3 charge, at several stations along the tube

exterior. Complete quantitative comparison with the BRL

results is not possible here since the ordinate is "pres-

sure" rather than strain or displacement as in the NASTRAN

results. This so called "pressure" is computed from the

measured strains c0 ' Ez according to the relation:

E(W2-)p -- [EO + -V z ]
2(1 2 ) 

where W is the wall ratio at the particular station where

Cos z are measured and E, v are Young's modulus and Poisson's

r-tio. If, however, it is assumed that F z<<E then the

ordinate used in the BRL report is apI)roximately proportional

to FO, and the ,IASTRAN-predicted radial displacement response

at stations along the bore surface differs only by a scalar

multiplier from this exterior circumferential strain. Thus

the two may be qualitatively compared.

The load functions used in the NASTRAN model also correspond

to a Zone 3 charge.
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In comparing the NASTRAN results (Grid Points 34, 48,

68 - figures 11, 12, 13) with similarly located stations

4,5,6 of the 175mm tube used by BRL, one first notes the

negative ordinate values prior to the arrival of the pro-

jectile at each of these locations. Good qualitative

agreement can easily be observed. Next we see that NASTRAN

successfully replicates the abrupt loading condition experi-

enced at each station as the projectile passes. Finally,

figure 7 yields an estimated natural frequency of 2380 hz

visible mostly during the latter portion of the ballistic

cycle. This compares closely with the 2600 hz prediction

of the NASTRAN model. (Including structural damping into

the model should provide even closer agreement).

The amplitude of the oscillation as predicted by

NASTRAN is considerably greater than that in evidence in

figure 10 - the BRL results. In connection with this it

is interesting to compare the BRL results at the same

stations when a Zone 2 charge was fired. Figure 14

shows these results and it is immediately obvious that

the amplitude of the natural frequency oscillations is

greater than that observed from figure 10. This is

surprising in that a zone 2 charge is weaker than a

zone 3 charge. The explanation was provided when it

was learned that BRL employs a filtering technique in

dhe process of analogue to digital conversion.
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Conversations with Mr. John Hurban - author of the BRL

work - indicated that the extent of such filtering is not

[ known at this time. He allowed, however, that the degree

of filtering employed could very well vary from case to case.

Table II shows the maximum bore expansions from the BRL

report. As noted, the results correspond to a Zone 1 type

charge and stations 5 on tube numbers 4136 and 4137 are at

the same location as station 4 on tube number 1185; i.e.,

all stations are 259 in. from the muzzle end of the tube

(corresponding to NASTRAN Grid Point number 48). A compu-

tation of the Lame displacement at this point agrees within

12% with Nastran results (figures 11 and 12) so that one

does not expect a great deal of dynamic effect on bore dis-

placements at this location. Consequently one might also

expect good agreement between the NASTRAN predicted dis-

placements and those measured and reported in Table II - in

spite of the use of filtering. However, the difference

between NASTRAN's assumed Zone 3 charge and the Zone 1 charge

used in these test firings must of course be accounted for.
3

Tie peak pressure ratio for these two charges is 0.218

If the Nastran peak response of .007 in. is multiplied by

this ratio, the result gives a .0015 in. expected bore

expansion for a zone 1 charge - a figure which agrees quite

well with those listed in the right hand column of Table If.

3ANDERSON, H.B., Aberdeen Proving Ground, Development and
Proof Services Report No. 1375, Eleventh revision, Jan. 1968.
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[

It is a matter of considerable importance that the true

degree of natural frequency excitation be assessed for it

is this excitation which is responsible for the major

difference between the peak response as predicted by the

NASTRAN model and that estimated by the Lame solution. A

review of figure 8, for example, shows that the 35% increase

in peak response as compared to that predicted from the Lame

formula is entirely due to excitation at this 2600 hz

frequency. Filtering the strain gage response at or below

this 2600 hz frequency. level could very well lead to

erroneous and possibly unsafe conclusions. Mr. Hurban

found that the original unfiltered analogue tape recordings

no longer exist. More recently, however, new tests at Yuma

Proving Grounds have been conducted and a comparison verifies

our suspicions.

Owing to the unknown degree of filtering employed in

the BRL test records, it was highly desirable that new tests

be conducted without filtration. This opportunity arose in

the Spring of 1974 when M113 firings were scheduled (for

other purposes) at Yuma Proving Grounds. Watervliet Arsenal

succeeded in their request to have strain gages mounted

along the outer surface of the tube at four axial stations.

Figures 15 and 16 show tile experimental results at stations

;#3 and #-4 which correspond to grid points #72 and #120

(Figure 8 & 9). It was gratifying to observe natural
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frequency excitations far in excess of these of the filtered

BRL records. The general similarity of these experimental

records with those produced by the NASTRAN model is apparent.

Two prominent comparisons are the production of large

amplitude 'beats' and the possibility that the pha-se of a

natural oscillation may be such as to produce an extra-

ordinary strain above the Lame value immediately upon passage

of the projectile at a particular station. Such phase

agreement is unfulfilled in figure 15 but is clearly evident

in figure 16. In that no damping was employed in the

NASTRAN model, the generally larger amplitudes of vibration

in figures 8 and 9 are to be expected. The dominant

frequency excited in the NASTRAN model which is in excellent

agreement with the BRL test records, does not at all agree

with that appearing in the YPG results - the latter being

done to 1600 hz and the former near 2600 hz as previously

noted. The discrepancy can be explained by the fact that

the tube fired at YPG has a considerably thinner wall than

that employed in the NASTRAN model.
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SECTION II - TRANSVERSE RESPONSE OF THE M113 TUBE TO

'BOURDON' LOADS

In addition to the radial response of the M113, some

progress has been made in estimating the transverse response

to a pressure load along the bore surface.

As a first approach we have imagined the 175mm tube to

be in a state of readiness, inclined to the vertical as

shown in figure 17. Only the bore axis is depicted here -

the curvature (exaggerated) being due to the action of

gravity (vernacularly referred to as 'droop'). Because of

this initial deformation at least three non-elementary

forces act upon the tube when fired - the so-called 'Bourdon'

force (due to unequal upper and lower bore surface areas),

the recoil acceleration moment, and the forces due to the

curved path traversed by the projectile while in-bore. A

fourth non-elementary force arises due to the action of the

gravity on the moving, in-bore, projectile. In addition to

these (and possibly others) one also has the elementary

forces of transverse beam inertia as well as the constant

gravitational force acting directly on the tube. The

resulting equation of motion* - based on the beam flexure

formula is:

(Ely")" + K(x,t)y" - [pgAsinc4][(x-L)y']' +

+ Mp[y + 2V y' + V y" + gcosct]S(x-V t) + pAy - pgAcosa

pp p p

*For complete derivation see Appendix.
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In order to obtain some idea as to the motion to be

expected from say, the 'Bourdon' loading, we have treated

a simplified case in which only the 'Bourdon' load acts in

conjunction with gravity upon the tube. If we let a = 0,

the equation of motion reduces to:

(Ely")" + K(x,t)y" + pAy = -pAg

with initial conditions y(x,O) = Y(x) and S(x,O) = 0 and

boundary conditions corresponding to a cantilevered beam.

Y(x) is the 'static' deformation due to gravitational forces

acting upon the structure prior to t = 0. To keep the

problem as simple as possible in this first attempt we

consider a Bourdon loading which arises from the application

of a uniform ballistic pressure applied stepwise in time at

t = 0 along the entire bore surface of the tube. Choice

for the amplitude of the step was more or less arbitrarily

based on the time-averaged value of the ballistic pressure

cycle for the M113; Pav= 13,420 psi. As shown in the

Appendix this leads to a Bourdon term in the previous

equation of motion:

K(x,t)y" (x,t) = Pav~ra y'' (x,t0

Except for this term, the equation of motion can be viewed

as a typical beam problem which, if one so chooses, can be

solved via NASTRAN. Provided that the above distributed

Bourdon load can be discretized into concentrated loadings

at the nodal (grid) points of a finite ele'ment beam model
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of the M113, the Bourdon forced motion problem can be made

amenable to NASTRAN solution also. The discretization of

any distributed loading over the surface of an element can

be accomplished as follows:

The concentrated 'forces' at the nodes of a finite

element may be obtained from knowledge of any distributed

loading f( ) through the following relation:

F = Lf 1aTf( )d
0- -

where is the non-dimensional length variable x/L and L

is the beam element length. a(x) is defined through the

relation:

y(x) a(x)U

where U is the vector of nodal displacements for the

element. In a finit, beam element a(x) is determined

'exactly' by solving for y(x), the transverse displacement

of the element, given the imposed idsplacements U

(generalized) at the ends (nodes) of the element.

Utilization of these formulae will result in a force

vector F having the form F =a. U; i.e., a form accommodated

by one of the NASTRAN load formats (NOLIN2). Thus the

problem of Bourdon-forced excitation of a non-uniform beam

may be converted to finite-element form suitable for

solution via the NASTRAN finite element program.
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An eighteen-element beam model of the M113 tube was

employed for solving the previously described problem.

The details of this model and the pieparation of the load

input to the program will be covered in a later report

which will also deal with more realistic ballistic functions-

a task which presents only moderate difficulty.

Figures 18 and 19 show the NASTRAN results for this

case of infinite projectile velocity and constant pressure

loading. In figure 18 we show the shape of the M113 at

shot ejection (estimated to occur at about 25 milliseconds

after ignition) whereas figure 19 shows the predicted

muzzle movement in time.
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CHAPTER TWO

The Importance of the Moving Mass Problem

In more conventional applications the difference in the response of

a structure to a moving mass and to the weiLIght of this mass is not very

great. However, if the moving mass is an appreciable fraction of the

total structural mass of the problem - or if the velocity of the mass

is very large, an unconventional structural problem is defined in which

the difference may be quite pronounced. There are at least two illustra-
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tions which come to mind: (1) - a railroad train crossing a long
I

trestle '(in which. the moving mass comnares to the mass of the trestle),

and (2) - a nrojectile traversing a long tube (in-which uncommonly

high velocities are evident). We are professionally interested in

the latter as a knowledge oP the resnonse of a tube to a moving mass

leads immediately to a good estimate of the resultant interface pres-

sure between the projectile and the hore surface - an important first

sten toward the ultimate unerstanding, of the causes of bore and

muzzle wear problems and nroner design of irojectile casings and

rotating bands. "the imrnortance of the structural resnonse of the

tube in altering the round trajectory is also apparent. Thus treat-

ment of the moving mass nroblem has a wide base of military justi-

fication.

State of the Art in Moving 'ass -Problems

Although the method of computation reported herein is immediately

applicable to a finite element beam model of a gun tube, it is first

necessary to assess the accuracy of the method by applying it to a

problem which has received prior treatment and reported in the liter-

ature. The most common base for comparison has been the experimental
2

work of Ayre, Jacobsen, and I1su - nresumably because of the lack of

(1) Stokes, Sir George G., "Discussion of a Differential Equation Re-
lating to the Breaking of Railway Bridges," Trans Cambridge Phil Soc,
8, p. 707, 1819

(2) Ayre, R.S., Jacobsen, L.S., and I1su, U.S,, "Transverse Vibration
of One and of Two Span Beams Under the Action of a Moving Mass Load,"
Proc. of First National Conress on Applied Mechanics, June 1951
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any simple analytical solution with which to conrare results. ( The

analytical 'solution of Schallenhamn is not convenient for geneiral

application - this will be mentioned further on in the report)

This report is therefore concerned with nredicting the resnonse

of a uniformsimply sunnorted beam while subjected to a concentrated

mass moving along its length at constant velocity under the influence

of gravity. The method emnloyed, however, is immediately applicable

to time variant rass velocities as well as other boundary conditions

and variable beam cross section.

Before commencing with the details of the movin, mass problem it

may be worthwhile to point out the theoretical differences between

, [ohlems in which masses are in motion and those which involve only

moving forces.

Io begin with, moving loads* are but special cases of time and

space variant forcing functi-ons f(x,t) for one dimensional structures

such as beams. lhe customari beam equation of forced notion can be

3
written

$V + W= f(x,t) ... (I)

where '.! and L are operators:

2 2
It =A; L = (EI /Ax )

(3) Tong, K,, Theory of '!eclianical Vibrations , J. i ley ,'Sons, 1960
n. 300

* The term 'load' is intended to be neneral and to ropresent applied

loads such as moving forces and/or masses
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Solving the homogeneous forr of equation (I) (f(x,t) - 0), i.e., the

free vibration problem-leads to the-eigenfunctions rn(x) and the

eigenvalues w with which any forced motion problem (f(x,t)i 0)

can be solved.

Transforming to modal coordinates pi(t) defined in the expansion:

1'1
w~x~t) Z (t)ri(x)

j leads to an infinite number of differential equations which are

uncoupled:

. 2
i.e. mii(i + (ip i ) = (x,t)ri(x)dx

where mii= 6r i (ri>dx

Now if f(x,t) is a moving concentrated force i.e.,

f(xt) = -Po6(x-vt)

then (3) ,becomes:

2
mi i (pi +Wipi) = -Port(vt) ... (4)

*'lie solution to (4) can be written immediately in terms of fhe

eigenfunctions and eigenvalues of the free vibration problem.

For a moving mass, howeve-r,

f(x,t) = -mw (x-vt)
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Mhen substituted in (3), the right hand side becomes:

-MP4,3w/t2ri(x)6(x-vt)dx = 2w/at 2 ri (x)[(-mt)
X=Vt

but w/Dt2I : w(vt) + 20'(vt) + v2w"(vt) ; ' :/ax
x=vt

using (2): a2w/ t2I = T{rj(vt)pj + 2vr. (vt)pj + v2r,'(vt)p j}
x=vt "]

then (3) becomes:

mii(p i + w2pi) = -ma (rj (vt)pj + 2vrj (vt)pj + v-rl'(vt)pj)

,.. (5)

In contrast to (4), equations (5) are not uncoupled. In fact all of

the variables pi, i = 1, , appear in each of the infinite number

of differential equations. To make miatters worse, each variable has

a time-variant coefficient. To date the only exact mathematical

treatment appears to be Lhat due to Schallenkamp4 involving a triple

infinite series equation for unknown Fourier coefficients.

Thus the whole concept of natural frequencies and modes of vi-

bration loses its value in quantitative determination of the response

of a system with time variant properties - of which the moving mass

is but a special case. For every location of the mass along" the beam

we have a new infinity of cigenvalue solutions. With an infinite num-

(4) Schallenkamp, A., "Schwingungen von Tragern bei bewegten Lasten,"
Ingenieur-Archiv, v.8, 1937, pp. 182-198
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ber of locations for the mass to occupy, we thus have a double

infinity of eigenfunctions and eigenvalues.

Equation (1) can, however, be solved numerically - regardless of

the space and time dependent material properties and the forcing

term. In what follows we eliminate the space variable through the

finite element process. The time variable is handled by a numerical

integration procedure of common variety (predictor-corrector). In

essence therefore, we approximate our continuum description (1), by

a finite number of ordinary differential equations with time depen-

dent coefficients.

Continuum Description of the Moving MWss Problem

In the Appendix a derivation is given for the equation of

forced transverse motion of a beam model of the Ml13 gun tube:

(EIly")"= -k(x,t)y" + (pAXo(t) + pAgsincc)y"(x-f) + (pAXo(t) +

pAgsina)yl - mp(y + 2vy' + gcosa + v2y"5)(x-vt) - pgAcosa - pAy

... (6)

'his equation assumes that A, the beam cross section is uniform and

that v - the velocity of the moving mass mp is constant. In that

we All be applying the equation to beam elements of uniform and equal

cross section the former assumption is consistent. This restriction

is not necessary to the generality of the method. The assumption of
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constant velocity is motivated by our desire to compare results with

the work of Ayre, Jacobsen and iisu. In (6) the term k(x~t)y" is the

so called 'Bourdon' force. Terms in Xo represent transverse fcrces

induced by axial recoil acceleration when beam curvature and slope

are non-zero. Terms in pAg are due to the beam weight. A'one of

these forces are of interest in this report which deals exclusively

with forces induced by the moving mass:

2i.e. f(xt) = -m Cy + 2vl' + g + v y")6(x-vt) ... (7)
p

where a. the tube elevat*ion angle, has been made equal to zero.

Thus the special version of equation (6) we will be concerned with

in this report:

Ely"' + pAy = -M(y + 2v9" + g + v2y")6(x-vt) ...(8)

where EIp, and A assume constant values. The left hand side of

(8) is recognized as originating from the simplest of beam theory,

i.e., where the entire transverse deflection of the beam is assumed

to be due to bending moment only. Tle right side of (8) therefore

represents the totality of applied loads, the first term corresponding

to the inertia of mp; the second is a 'Coriolis' type load; the third

is due to the gravitational force on m (its weight) and the fourthp

is the 'centrifugal' force due to mp following the beam curvature.

'Ihe Dirac - delta function -6- specifies that each of these forces

acts in a concentrated fashion at the location x = vt along the beam.

As written equation (8) is a continuum description of the problem.
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Using the method of finite elements the space variable, x, will be

discretized - resulting in a set of ordinary differential equations

with time as -the independent variable,

THE FINITE ELEMENT DISPLACEMENT METHOD

The basic procedure in finite element procedures is to consider

the structure of interest as being composed of elements connected

together at adjacent attachment points - called nodes or jrid points.

For the case at handthe elements will be considered as short beams

connected end to end to form the longer beam structure of interest,

On- then seeks to relate (at least approximately) the displacement at

any point interior to an element solely in terms of certain generalized

displacements assumed at its attachments.

Figure la shows the beam structure of interest (corresponding to

equa.tion (8)) broken down into three shorter beam segments or elements.

'l7he generalized displacements at the points of attachment consist of

one translation and one rotation. (We could define more). It is ob-

vious that when adjacent elements are connected the element displace-

ments at each point of attachment must agree, i.e., must be continuous.

1 2
e.g. u3 = u2  , etc.

Iiis continuity requirement between element displacements therefore

reduces the number of generalized DI pont dslacements. For the

three beam elements shown in fig 1(a), the number of independent dis-

placements is thus reduced from twelve to eight upon connection of

the elements as shown in figure l(b).
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Figure 1(c). A General Beam E~lement in Deformed Configuration.
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Letting y(x,t) represent the transverse displacement of the beam con-

tinuum between the end points of a given element (fig 1(c)) the pro-

cedure is then to approximate y(x,t) as a linear function of the

e
generalized element displacements ui . (The assumption of lineari.ty

e
will lead to linear differential equations in the u.) Since there1

e
are four u. per element - all of which are as yet arbitrary - we can

1

try a polynomial expression with four arbitrary constants, i.e. a

cubic:
2 3 i

y(x) = a o + a x + a2x + a3x = ax

where, in the latter notation we intend that a sum be performed over

epeated index i, with i ranging from 0 to 3.

The a. can easily be determined from the four conditions:1

e e
y(Ot) = u1  ; y,{Ot) = u2

= e =ue

y(,t)" = u3 ., y'(tt) = 4

The result can be expressed as the vector product:

y(x,t) = a(x)ue ; 0 < x < . (9)

explicitly,

2 3 2 3 32e
y(x,t) = { .1 -3C +2C Z(F,-2 F,+ $)I 3F.2-29 I(E -)2) } u1

e
u2

where F, = x/t u e

3

4
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Equation (9) constitutes a formal discretization of the continuum in

that all interior displacement information has been referred to the

end point, or element, displacements. The goal then is to determine

these displacements ue(t).

Mhen subjected to sets of applied forces and constraints (boundary

conditions), the beam element responds according to the laws of

mechanics from which we are free to choose any one of several in

which to formulate the equations of motion of the element. It is

convenient to employ the principle of virtual work for dynamic load-

S
ing - which states that in a virtual displacement 6y(x) . of the

beam element from its instantaneous state of equilibrium, the incre-

ment in strain energy, i.e., the virtual strain energy, is equal to

the sum of the virtual work done by al-l the forces including the

inertia loads.

i.e. 6U = 6W - 6pt6yyAdx ...(10)

where 6U represents the virtual elastic strain energy resulting from

the virtual work 61V of the applied forces and the virtual work of

the inertia forces. (p is the material density and A the beam cross-

sectional area.) In general the elastic strain energy due, to a vir-

tual displacement can be vritten:

6U = fo6cdxdydz ... (11)
V

where a is the induced stress due to virtual strain 6c.

(5) Przmieniecki,JS., Tlheory of. Mlatrix Structural Analysis, McGraw
-Hill, 1968, p. 267
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"flie virtual work due to applied forces f(x,t) per imit: length:

0

Thus (10) becomes:

fa6cdxdydz ff(x,t)6ydX -f0y6yAdx ...(12)

v 0 0

looke's Law specifies:

a = BC

In beam theory, a = E, Young's modulus, and c = hy", h being the

distance from the beam neutral axis to the fiber in which a is being

defined. Substituting in (12), the left term becomes:

f f Eh y"6/'t dxdydz 1:1 f y"6y"dx
0 A

so that (12) becomes:

EIfy"6y"dx = ff(x,t)6ydx -f oy6yAdx ,,,(13)
0 0 0

,aking use of the approximation (9), ie., y -1(x)ue;

6y = a(x)6u and 6y"

Substituting these expressions in 
(13):

2. -2e 
2.

E:lfl$6uca"a"u dx : fiuef(x,t)dI x " Af6 C-1auCdx

0- - -0 0 -o
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Since the virtual displacements ue are arbitrary:

{ pAfaadx lue + { Elf "a"dx )u'e  = fif(x,t)dx ...(14)
0- - 0-- - 0 -

(a bar over a quantity denotes its transpose)

The nxn matrix coefficient expressions (n = 4 for the problem at hand)

of u and u deserve to be called me and k e respectively and the

right hand term is the force vector fe whose elements replace the

distributed and applied forces present in the continuum problem.

flhese forces are considered as being applied to the ends of the

element e. The matrices me and ke have been evaluated many times

in the literature6  and will simply be repeated here for beam elements

of four degrees of freedom.

12

42 symm

ke = 

4ZI/ 
9 3

-12 -6Z 12-
2

61 2Z -6t 42

F156
/229. 4 2 symm

MCpA9./420
I 54 139 156

131 -3Z -22t. 492

(6) Przmieniecki, J.S., 'Theory of Matrix Structural Analysis, McGraw
Hill, 1968, p. 81, 297
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To form the force vector fe, the expression f(xt) from equation (7)

is substituted into the right side of equation (14).

thus fe - m ( 2vy + g + v2y")L6(x-vt)dx
0 Pu

substituting the relation y(x) aue

fe = m (x){aue + 2va'le +g + v aue6(x-vt)dx

(t)U + v + c3(t)uet)

0 <vt<t

= 0 other, ise

where c l ( t ) = i(vt)a(vt)

c 2 (t) = 2viC(vt)a'(vt)

C3(t) = v2 a(vt)a ' (vt)

Equation (14) can then be written:

e .+ mc e e(m + .Mct))ul . mpC2(t)he (k + 3t))u = -mpga(vt)

... 0< vt<t

or simply,

C , e3
11 (t~u +Y(t) 11e iK(t)U (t) .'S
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Outside the interval 0 <vtL , the time variant coefficients ci(t) and

a(vt) must be replaced by zeros. This can be accomplished by nullify-

ing the m factor outside this interval.
p

Equation (15) represents a set of n ordinary differential equations

with time dependent coefficients. They are the differential equations

of motion for any beam element of density p and section modulus EI

as well as cross-sectional area A. All of these element properties

may differ from element to element.

STRUCTURE EQUATIONS OF MOTION

The equations of motion for the combined structure, i.e.,

i.(t)U + C(t) + K(tRu F(t) ... (16)"

are formed as follows.

Each term of equation (15) constitutes a force - , at the element

attachment points, i = I thru n. When all elements are joined the

resultant force at the connections (grid points) is the sum of the

individual forces at the attachments. For example, the inertia forces

at the right end of the first element (cf. fig 1) are to be added to

those at the left end of the second element to yield the total inertia

force at the connection grid point.

i.e., the inertia forces acting on the first element - element Hl

in figure 1 - in the u1 , u2, u3 , and u4 directions are the vector com-

ponents:

'Yi -- 'Iijuj
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Summation over repeated subscripts is intended and i f j range from 1

to n. Similarly for element #2:

u. 2 uj2
1 2i Aj

Upon joining these two elements, combines with the force 2 and
3

lIJ1 with 2 so that the resulting forces on the two-beam substructure
42

are, for the case n = 4:

1 11 12 13 1 0 0 0 0 u1

1 1 1 U1 0 0 0 01

2 21 22 23 24 2

1 + 2 1 1 1 1 2 2 2 2 ..1lb ii 1 u 1 P 1  u

3 1 = 31 32 33 34 11 12 13 14 3
1 2 1 1 1 1 2 2 2 2 1

4 2 4 42 43 44 21 22 23 24 4
2 2 2 2 2 2

3 0 0 0 0 31 32 33 34 1

2 2 2 2 2 .'2
4 0 0 0 0 41 p42  43 44 2

3Su.

Enforcing the equality of the displacements, velocities, and acceler-

ations of the attachments, i.e.

= 2 nd
3 1- U3 4

where the upper case letter denotes that US  U are rid point
4

accelerations in conformance with figure l(b).
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Hence in terms of grid joint notation:

1 1 1 1 " " -
T1 11 '12 U13 "14 0 0 U1

1 1 1 1 "

2 21 22 23 24 U2

1 1 1 2 1 2 2 2
3 31 '32 (U 3 3 +V1l)( 3 4+ 12) " 13 U14 3

1 1 (p+I )(V1IJ2) I2 ""
4 41 42 43 21 44 22 23 24 U4

2 2 2 2
5 31 132 33 u34 US

2 2 2 2
6 41 42 43 44 U6

M(t)U(t) ,.. the inertia forces acting on the grid poin'ts

of a 2-element substructure. The other forces in the equations of mo-

tion for this structure are formed by similar superposition. Thus the

structure equations of motion are formed by overlapping and summing the

element matrices wherever a grid point connection is made. For an N -

element beam there will be N-1 such overlaps (shown schematically in

figure 2). Each overlap will contain n/2 entries from the lower right

corner of the nxn matrix corresponding to the element to the left of

the grid point - and n/2 entries from the upper left corner of the

matrix corresponding to the element to the right of this grid point.

I'hese overlapping elements are to be summed.

I|
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It ,is to be noticed from equation (1B) that in general, the coeffi.!

cient matrices P e and _ consist of a constant part (null in the

case of ye) and -a time variant part which derives from the moving mass

mp. These time variant elements are null except when t is such that mp

is located within the length of a particular beam element. Oniy then

are the time-variant comporusnts of the corresponding element matrix

finite. Thus in figure 2,one conceives of a conventional matrix of

constant coefficient multipliers of the acceleration, velocity, and

displacement terms plus a time variant set of components which propagate

in a band along tie diagonal of each structure coefficient matrix as the

moving mass traverses the beam in time. Thus at any-instant only n of

the structure equations of motion possess time variant coefficients -

n being the number of element displacements (degrees of freedom) con-

sidered for each beam element - four for the case at hand. Thus the

prospect of sod ing the full set of equations numerically - without

incurring extraordinarily long computer rim times - would appear to

be good. For example it is not uncommon to solve via computer, a

fifty degiee of freedom transient problem in conventional structure

dynamics via the finite element technique - where all of the coefficients

are constant in time. It should therefore involve only a moderate in-

crease in computation time to allow four of these equations to take

on time-variant coefficients as in our problem of the moving concen-

trated mass. Roughly speaking one might expect trat each time-variant

matrix element will create additional computation no greater than that

caused by adding another degree of freedom to a conventional constant

coefficient problem. Thus a $0 degree of freedom problem - e.g.,

i--- 43-9---~ ,[~-~-- --



twenty-four connected beam elements subjected to a moving concentrated

mass - could ,be solved with a computation time not in excess f. a

ninety-eight degree of freedom problem in which all the matrix coef-

ficients are constant. 1i e(t), y.t), and-Ke(t) each comprise sixteen

time dependent components).

Boundary Conditions

A great convenience of the finite element ,procedure - as compared

say, to the Ritz or Galerkin procedures - is that all ambiguity is

removed in choosing the boundary conditions to enforce. ( This is due

to the particular stage of deduction at which the finite element ideal-

ization is invoked in a variational procedure*). In practice all one

has to do is mimic physical reality. For example, a beam with hinge

(simple) supports at each end requires that the corresponding displace-

ments vanish; e.g., in a three-element beam model, U1 = U7 = 0. Simi-

larly a clanped cantilevered beam would insist that U1  U2 = 0. In-

stcad of specification of particular zero values, however, it is more

efficient to merely delete the corresponding rows and columns from the

coefficient matrices M , C, and K of equation (16). Thus for the case

of a three-element hinged-hinged beam, we simply delete the first and

the seventh rows and columns from these nntrices. Similarly we delete

the corresponding elenents from any force vector P , appearing on the

right hand side of this equation. -

*Conversations with Dr. Gary Anderson, Applied Mathematics and Mechanics
Div, Benet Weapons Laboratory, Watervliet Arsenal, Watervliet, N.Y.
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PROBLEM STATEMENT AND SOLUTIONIi
For the purpose of comparing results achieved by finite elements

with those appearing in the literature, the problem to be solved is one

of three beam elements connected end to end to form a simply supported

beam having uniform cross section and material properties. A moving

mass, mp , is assumed to traverse the beam from left to right at a

constant velocity v - see figure 3.

Deleting the first and seventh rows and columns from the coefficient

matrices HC and K along with the first and seventh components of the

vector F of equation (16) results in a six degree of freedom problem

- that.is, six coupled equations of forced motion. These equations

will be solved numerically with mp and its velocity v, serving as

parameters.

In reality we have no clairvoyance to guide the choice of values

for mp and v except, of course, to repeat those used in the literature

so that a comparison may be made. It appears, however, that the

values chosen by Ayre, et al, were not completely arbitrary in that

certain values of v will cause resonant (secular) behavior in the

moving force problem. From equation (3) we can verify that resonance

will indeed occur for any value v = v , such that mii (v*) = 0. Al-

though applicable only to moving force problems, it is intuitively

plausible that extraordinary behavior in the moving mass problem

might occur for values of velocity not far removed from these values

v*. Having no 'closed form' analytical solution with which to an-

ticipate points of singular - or otherwise interesting - behavior, one
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U 0=8

Figure 3. Finite Element Model for M'oving I-lass Problem.
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can do no better than to at least allow the velocity of the mass to

range through the lowest v* which will cause m.. to vanish. This

apparently was the reasoning behind the choice of velocities investiga-

ted by Ayre, et al, who performed experiments in which v was chosen

as v /4, v*/2, and v* for the moving force and v*/4 and v*/2 for the

moving mass - v* being the first value of v to cause m to vanish,

i.e., the first resonant or 'critical' velocity of the moving force

solution. (Maintaining contact between the beam and mass for velocities

higher than v*/2 was apparently impossible.)

For the simply supported beam being considered:

i(v) = a2v2 2 ... (17)

where a i = ir/L, L being tile overall length of the combined beam
12

structure and wi = a. VEI/pA

Table 1 lists the material constants and dimensions employed for the

three identical beam elements used in this work. From these-values

one calculates from (17) for i=l:

v = 899.13 in/sec

We intend to examine numerical solutions for the moving force and

the moving mass throughout the range 0 <v < v*

Two primary references will be used as basis' of comparison:

(i) "lie exact solution for the moving force solution 8 which for

(8) Nowacki, 11. Dynamics ot Elastic Systems, Chapman & Hall Ltd,
London, 1963, p. 136
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TABLE 1. MATERIAL PROPERTIES AND NOMENCLATURE

Material aluminum

p Density 3.14 x lO 4 lbsec2/in4

L Overall Beam Length 
3z

Length of each element 120,0 in

pAL Beam Mass

m Moving Mass 0.0, oAL/4, pAL/2

p
7

E Young's Modulus 1.0 x 10 psi

A Beam Cross Sect. Area 31

I Beam Area 'loment of Inertia (fixed by choice of w1 below)

h Beam Thickness 2.0 in,

Wl/271 Beam Fundamental Frequency 1.25 hz

V 'lass Velocity 100., v /4, v /2, v

v Fundamental Resonant Velocity 899.13 in/sec
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the case of a moving concentrated downward force -mp6(x-vt) is •

® 2_ n2
y(xt) -2mpg/oAL fsinanx(Ovsinwnt - wnsincanvt)/Wn(a v2- 2

The finite element solutions for the moving mass problem (Equation (16)

after imposing support constraints) with mp = 0 will be compared with

computations of (18) above.

(ii) The experimental work of Ayre, Jacobsen and llsu 2 . The mass

velocities employed in this work were quasi-static v -0, and v v /4,

v /2, and v *. The moving mass values chosen were mp = 0, and mp =

'AL/4 and pAL/2 where pAL is the total beam mas,.

Equation (16) is solved using Hamming's modified predictor-corrector

method which uses fourth order Runge-Kutta method suggested by Ralston10

for adjustment of the initial increment and for computation of starting

values. The method is taken directly from the IBI Scientific Subroutine

Package for the IBM System #360, re: Programmer's Manual # 120-020S

available this laboratory. The method was found to be about four times

faster than using the Runge-Kutta method throughout the entire problem.

In general, run times in the order of 20 - 30 minutes on the IBM model

44 computer.

(2) Ayre, R.S., Jacobsen, L.S., and lisu, C.S., "Transverse Vibration
of One and of Two Span Beams Under the Action of a Moving Mass Load,"
Proc. of First National Congress on Applied Mechanics, June 1951

(10) Ralston and ilf, Mathematical Methods for Digital Computers,
Wiley and Sons, New York, London, 1960, pp. 95-109
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Results - Moving Force

Figures 4 through 7 show the transverse displacement of the beam at the

grid point locations x = L/3, 2L/3 as computed either by. the finite

element method or by evaluation of the exact solution (18) - any dis-

crepancy between the results being too small to be discerned even in

plots of this scale. This is substantially less error than appears in
4,9

K other treatments yielding-approximate results.

Using the relationship (9), i.e., y(x,t) = a(x)u (t) with x = vt,

gives the displacement directly beneath the moving load to be compared

with the results of"Ayre, et al, who recorded displacement information

exclusively at this location. Figures 8 - a,b,c show these compatrisons

and it is obvious that the agreement with experiment is much better in

figures b and c than in a. Actually, Ayre and his co-workers experienced

,onsiderable experimental difficulty when the force was translated at

v /4. Quoting from their publication in which the authors remark on

their disagreement with Schall'enkamp's theoretical solution for the

moving force (evidently a three term approximation of expression (18)):

..."rhe agreement is generally good [except at v /4] where it has been

found that comparatively small errors in velocity may result in marked

differences in the shape of the trajectory." ... In Sa the theoreti.o

cal curve used by Ayre as a basis of comparison has been included.

(2) Ayre, R.S., Jacobsen, L.S., and l1su, C.S., "Transverse Vibration
of One and of 'Two Span Beams Under the Action of a Moving Mass Load,"

oPrc. of First National Congress on AppLied Mechanics, June 1951

(4) Schal lenkamp, A., "Schingungen von Tragern bci, bwegten Iasten,"
Igeneur-Archiv, v.8, 1937, pp. 182-198

(9) flutton, D.V., and Counts, J., "Deflections of a Beam Carrying a
Moving Mass," Trans. A-SME, Sept, 1974, 1). 803
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The exceptional agreement (using only three finite beam elements) of

the finite element results for the moving force gives confidence in ex-

tending the technique to the moving mass problem - for which no simple

solution as (18) exists.

Resuls - Moving I-lass

Figures 9 through 14 show the transverse displacement of the beam at the

grid point locations x = L/3, 2L/3 as computed by the finite element

procedure for various cases of velocity and mass values. Again use

will be made of relationship (9) to convert this information to dis-

placement beneath the moving mass so that a direct comparison with the

experimental results of Ayre, Jacobsen, and IIsu can be made, Figure

1S - a,b c shows this comparison to be quite good - excellent agree-

ment occurring at the grid point locations. A cl6ser look shows, however,

that the slopes of the curves generated by the finite element analysis

a.re discontinuous at the grid point locations. The reason for this is

that the displacement approximation (9) is built from cubic polynomials

which are not continuous in the second derivative at the grid point

connections, Indeed, only continuity in y and y' were demanded in

constructing these polynomials.

The discontinuities of y"(x) at grid points might not be serious if

it was not for a 'force' in the continuum equation of motion (8)...

2
inv y"(x), 'llus at higher velocities jump discontinuities in y" will

cause increasingly powerful disturbances which vre nonphysical in

character. This is apt to be especially influential in armament

*Note: All displacements are normalized with respect to the displace-

ment which occurs at midspan due to a static load at this point.
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applications involving velocities considerably larger than v*.

One approach toward rectification of this problem requires the

formation of higher-ordered polynomials which are continuous in the

second derivative across the grid points of the structure. Higher

polynomials have additional coefficients and, as in the previous deri-

vation, these coefficients are equal in number to the element degrees

e
of freedom, i.e., the generalized displacements ui.

The establishment of polynomial displacement functions proceeds in

the same manner as before, with the added conditions:

e e
y"(o) = u3  ; y"L) = 6

The result is that y(x) will be approximated interior to an element by:

ey(x) = a(x)u ;
e

where a and u eare now vectors with six components instead of four.

The new (^) element matrices are calculated according to equation

(14). The. multiplication and integration was accomplished analytically

by a computer program called ,1ANIP which was written in the FORMAC

language -giving analytical expressions as output. Similarly, new

expressions for cl, c2 and c3 for use in equation (15) were formed

using this program. ke and mC compose the constant elements of the
e^e

matrices ji and i and are found to be:

455



120 602 3 2  -120 60 - R 2

622 
3l 125 2  (ii15) 3 1 -60t (i108/5) -4 St5£

4 2,3 4(3/5)1 4  -3 2  (4/15) 3 Y.41 10

2
120 -60Z 3R2

(192/.5)t 2  _lit 3

k El syr-=7tt 3t4/5

181/2 (311/20)9 (281/240)t
2  25 -151Z/20 1812

52t 2/15 23Z 3/80 1519/20 -1331 2/60 
139_3

60

t4 /40 1811 2  _13L3/60 Z4

240 48
2

S oA sym181/2 -311E/20 281t
231 1 1 2240

(52/15)t2 --231 3

80

£4

4r

456



Figure 16 shows the improved results obtained through the use of the

quintic polynomial. Comparison should be made with the results obtained

via the cubic polynomial as shown in figure 15(a). The price paid,

however, is increased computation time due to the additional degrees

of freedom induced through the use of the quintic. One also faces

increasing amount of ill-conditioning in the matrix equations of motion

due to the widely differing magnitudes induced in the coefficient ma-

trices and their corresponding output variables. Fture work will

concentrate on these problems and the use of less time-consuming

integration algorithms.

p45

"I

.1

457



BERM DEFLECTION UNDER A MOVING LORD
VELOCITY U V/4 MP =0.25wRHfxRxL

MIN 0.4739 -1.3598

MRX 1.0001- 0.0000

VxT/L

I-

C)

LU
C

J

>-.

Figure 16. Improved Resuilts Using Quintic Shape Function.

458



REFERENCES - CHAPTER TWO

1. Stokes, Sir George G., "Discussion of a Differential Equation

Relating to the Breaking of Railway Bridges", Trans. Cambridge

Phil. Soc., 8, p. 707, 1849.

2. Ayre, R. S., Jacobsen, L. S., & Hsu, C. S., "Transverse Vibration

of One and of Two Span Beams Under the Action of a Moving Mass

Load", Proc. of First National Congress on Applied Mechanics,

June 1951.

3. Tong, K., Theory of Mechanical Vibrations, J. Wiley & Sons, 1960,

p. 300.

4. Schallenkamp, A., "Schwingungen von Tragern bei bewegten Lasten",

Ingenieur - Archiv, V. 8, 1937, pp. 182-198.

5. Przmieniecki, J. S., Theory of Matrix Structural Analysis, McGraw-

Hill, 1968, p. 267.

6. Przmieniecki, J. S., Theory of Matrix Structural Analysis, McGraw-

Hill, 1968, p. 81, 297.

7. Simkins, T. E., Pflegl, G., and Scanlon, R. S., "Dynamic Response

of the M113 Gun Tube to Travelling Ballistic Pressure and Data

Smoothing as Applied to XMl5O Acceleration Data", Watervliet

Arsenal Technical Report WVT-TR-75015, April 1975.

8. Nowacki, W., Dynamics of Elastic Systems, Chapman & Hall Ltd,

London, 1963, p. 136.

9. Hutton, D. V., and Counts, J., "Deflections of a Beam Carrying a

Moving Mass", Trans ASME, Sept 1974, p. 803.

459



10. Ralston and Wilf, Mathematical Methods for Digital Computers.

Wiley and Sons, New York, London, 1960, pp. 95-109.

11. Simkins, T., "Structural Response to Moving Projectile Mass by the

Finite Element Method", WVT-TR-75044, July 1975.

460



APPENDIX

THE BEAM EQUATION FOR TRANSVERSE MOTIONS OF TNE Mll3 TUBE

The beam equa.tion for the deflection of the neutral axis

assumes that a restoring moment proportional to the second

spatial derivative of the deflection y(x,t), will be induced

in response to any applied moment M(x,t):

i.e., M(x,t) = Ely''(x,t) (B-i)

where E and I are Young's modulus and the cross sectional

area moment of inertia respectively.

The applied moments M(x,t) are due to distributed and

concentrated loads acting on the tube. Some of these loads

act at locations which change in time. Figure 15 depicts

the general loading condition at any time and shows

(exaggerated) the initial beam curvature due to the action

of gravity. Because of this curvature, both transverse

and axial load components will possess moment arms with

respect to any generic point x along the beam neutral axis.

Thus the total moment induced by a particular load

distribution per unit length is:

L
Mw(x,t) f wt(,t)[ -x]=Wa(7,t)[y( )-y(x)]}d (9-2)

where L is the overall tube length and wt, wa are the
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transverse and aKial components of the load intensity

distribution w(x,t).

Similarly, concentrated loads P(x,t) located at various

points (t) and having transverseand axial components Pt,

Pa respectively, will induce a total moment

Mp(x't) = {[ -x]Pt [y(t)-y(x)]Pa}H( -x) (B-3)

where H(z) is the Heaviside function:

H(z) = 0 z<O

: 1 z>O.

As indicated in figure 15, four distributed type loads

exist as well as two concentrated loads. (Since the beam

inertia and bourdon loadings both act in a purely trans-

verse direction, they have been grouped together in the

figure.)

These loads will be considered individually, in the

order depicted in the figure.

(i) Gravitational force acting upon the tube at angle a.

The tube weight per unit length is constant in time although

in general it will be space-variant thru the cross-sectional

area function A(x).

wt = w t(x) = -pgA(x)cos(a)

Wa = Wa(x) = -ogA(x)sin(a)
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(ii) (a) Inertial Loads due to Transverse Beam Motion.

The inertia force acting upon an element of beam mass dm =

pA(x)dx is simply:

- (x,t)dm :-Y(x,t)pA(x)dx

thus

wt = wt(x,t) =-pA(x)5(x,t).

(b) Bourdon Loads.

Due to the curvature of the gun axis, the bore surface area

is not axially symmetric, i.e., there is an unequal distri-

bution of bore surface area above and below the neutral axis

of the tube. Therefore, when the tube is pressurized a

moment will be created. in the initially deformed configura-

tion as shown in figure 15, such a moment 'will tend to

straighten the tube initially. At later times in the

ballistic cycle however, the sign of the moment will vary

with the different modes of vibration. (In general one

might reasonably expect, however, that the fundamental

mode will dominate the deflection pattern and the net

result would be a moment tRnding to straighten the tube).

To derive the expression for the bourdon load, it is

simpler to first cpnsider a beam with a rectangular, rather

than circular, hole (bore) of height h and having unit

width into the plane of the figure. A section of such a

beam is shown in figure (a).
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Since equation (B-1) contains the assumption that the

deflection at any point along the beam neutral axis is

circular, there exists therefore a radius of curvature

R(x) which describes the elastic deflection curve of the

Referring to figure (a), the
difference in bore surface area
above and below the neutral
axis is observed to be:

\d =(R-)d - (R - =)d hd
22

Figure (a)

Since dp=4  dx and since =y', we have that
dx

do = hy'dx.

Consequently, the 'Bourdon' load intensity for a

rectangular bore of unit width:

wt(x,t) = p(x,t)hy''; where p(x,t) is the internal

ballistic pressure applied to the bore area.

For a circular hole we proceed in the same manner:

a ds = (R + asin(o))d

= (R + asin(o)dx/R

-d The projected elemental bore

surface area:

ads(sinodO) (R + asino)
Figure (b) (asinodo)dx/R
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Thus the net bore surface area corresponding to a

differential beam element:

f {a sin asinO}dedx = 2my''dx

0 R

i.e., the upper bore surface (above the neutral plane) has

a greater area per unit length than the lower bore surface

by the amount a2iry'' and the Bourdon load intensity is

therefore:

wt(x,t) =-p(x,t)a 2 y''  -k(x,t)y''.

(iii) Projectile Inertial Forces.

The curved bore path followed by the projectile causes

reactionary inertial loads to be applied to the tube.

Figure (c) represents the projectile as a point mass mp

travelling with velocity V(t) along the curved bore axis

so that at time t, its position along the bore is x=C'(t).

Figure (c)

The position vector T(t) as measured from the origin of an

inertial reference frame:

t
F ,T + y(,t) T; f : f Vdt

0
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r + "- ;L (*) = I/at

r :i + {- ['Y t+Y] + -. [Y_ t+Y])T
3E aEat BE

noting that a/3E = a/ax, we have:

-T + {V2y' ' + 2V ' + 3 + Vy'}j

where (') denotes derivatives with respect to the independent

space variable, x.

The transverse forces acting on the projectile are the

transverse component of its weight and the reaction of the

bore surface. This reaction must be equal and opposite to

Pt ' the transverse component of force acting on the tube.

thus, -Pt - mpgcos a = [V2y '  + My' + y + y']Ix=c

[VVy 2VS'E+ 3

or, P = -m P[V y'( 't) + 2Vy'(E,t) + y( ,t) +

+ Vy'(Et) + gcosa 3

(iv) Recoil Inertia Loads

For this purpose we consider the axial motion of the tube

to be uniform, i.e., at any point x the tube accelerates

rearward with the same prescribed acceleration Xo(t).
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Thus Wa(xt) -pAko(t) is the axial load intensity

functi'on representing the inertia load due to recoil.

Let w (x,t) and -P(x,t) denote the iotals of the distributed

and concentrated loads respectively. With this notation

the equation of motion becomes:

L
EIy''(x,t) : f {wt(,t)[E-x] -Wa( ,t)[y( ,t)-y(x,t)]}d +

+ {[(t)-x]Pt - [y(E,t)-y(x,t)]P-a}H( -x)

(B-4)

x is merely a dummy variable for integration, and (t) is

the point of application of the particular concentrated

load.

Ultimately, we desire a differential equation devoid of

integral forms. We proceed, therefore, to differentiate with

respect to the space variable, x, noting-7 that

L L
d/dx f h(x,x)d-x = f h/ xdT - h(x)

x x

thus,

L
(Ely'')' f {f t(T,t)-y 'wa(7,t)}dx-('t-y'P-a)H(E-x ) +

x -

ft(-x) - [y(,,t)-y(xt)]P'a}6( -x),

where 6(z) is the Dirac.-delta function.

4 HILDEBRAND, Advanced Calculus for Enqineers, p. 353.
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Now if f(z) is a continuous function:

f(z)6(-z) =f(O>5(z),

so that
L

(EIy''i -f t( ,t)+y'Wa(7,t)}dx

Differentiating once more:

L
(Ely'')'' = wt(x,t)'y'%a(x,t)+ f Y''%;a(i,t)dx- iSR6(lx

x

di( -x)

where

wt(x,t) =-pgA(x)cost pA(x) 9 - k(x,t)y''

Wa(x,t) =-PA(x)X 0 (t) -PgA(x)sint

Ta 0;

Tt -Mp= ~ , + 2VS'' + + mgcosa.

If A is uniform, then
L

x

and if, further, V = const. ,.so that =Vt, the final

equation of motion is:I *where S'(z) is a function having the property f 6'(z)flz)dz=
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(ElY")" =-k (x,t)y" + [pArX (t) + pAgsinctly"(x-L) +

+ [pAX (t) + pAgsincly' -m (y+ 2VS'' + gcosa +

2 0
+V y")cS(x-Vt) -pgAcos<(-- pAVY (B-6)
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I

INTRODUCTION

Causes of dispersion in guns is not a new topic in the armament

development community. Scores of reports treat the problem in general or

in a detailed examination of one or more of the factors which contribute to

dispersion. Much of the early work, although at least partially applicable

to any dispersion question, dealt with artillery, mortar, or tank rounds.

Dispersion in automatic cannon is discussed less frequently in the litera-

ture. Besides there being comparatively fewer automatic cannon systems over

the years, the nplication of dispersion has been different in automatic

cannon as contrasted with larger caliber weapons. In automatic cannon, the

*! design of both ammunition and gun has generally proceeded along pure

engineering lines. In production, after integration on the vehicle, the

mount is tuned to provide a system dispersion which falls in the 3 to 4-mrad

range. For the targets, engagement ranges, xates of fire and available

fire-control accuracy, this level of dispersion was generally acceptable

and, hence, no great attention has been devoted to causes of dispersion in

automatic cannon.

Comparatively recently, however, a new role for and approach to

automatic cannon has developed. The potential for building a tank-killing

automatic cannon in the 60 to 90-mm caliber ranges is being considered in

separate but related technology programs at the U. S. Army Armament Command

(60 mm) and Defense Advanced Research Projects Agency (75 mm). The British

have fielded a 30-mm automatic cannon, the Rarden, for use against light

armor. The U. S. Army Armament Command is conducting a technology program

to explore the necessary attributes of a precise, smaller caliber automatic

cannon system in the Low Dispersion Automatic Cannon System (LODACS) program.

All of these efforts share the goal of a system dispersion of less than 1 mrad;

the Rarden system has demonstrated such precision.
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In terms of dispersion, the fundamental question is asked, "What

are the important contributors to system dispersion?" As mentioned before,

much of the dispersion effort has been directed toward single-shot concepts.

For an automatic cannon, one rule of thumb suggests that, after completion of

development, the Mann barrel dispersion of the ammunition is 0.25 mrad; the

dispersion from a single-barrel automatic cannon on a hard stand is about

1 mrad, and the dispersion of a burst from a vehicle-mounted automatic cannon

is 3 to 4 mrad. This suggests that there are phenomena associated with burst

fire and with vehicle mounting which contribute to dispersion. Interestingly,

the Rarden gun achieves (occasionally) less dispersion from the vehicle mount

than from the hard stand. This gun, incorporating a sliding breech, a heavy

barrel with flash hider, and damping pads to reduce lateral motion of the

barrel is currently being studied and tested in the LODACS program.

This present BCL task effort was initiated to take a brief look at

factors which contribute to dispersion in an automatic cannon system. The

intent here is to identify trends and relative orders of magnitude of individual

dispersion-inducing phenomena, rather than to perform an exhaustive and

definitive study of the subject. The results would then be available for

consideration in initiating or adding emphasis to investigations of specific

phenomena, and to assist in planning subsequent system tests, and in

interpreting results.

This effort has considered the following causes of dispersion in an

automatic cannon:

* Projectile yaw

* Projectile yaw rate

* Muzzle-velocity variation

e Fire-control effects

o Projectile mass variation

* Throw-off

* Launch-angle error

o Eccentricity of projectile
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For convenience, characteristics of the Rarden round 
have been assumed.

The effects of variations in dispersion-causing factors 
have been calculated.

An attempt has been made to identify the parameter bounds 
to be antic-

ipated in a LODACS system. Owing to the quick-look nature of this inves-

tigatin, this has not been done in great depth, nor 
has the cross-coupling

of two or more of the phenomena causing dispersion been 
attempted. Thus,

the results are only to be considered indicative of trends.

METHODOLOGY

The problem is analyzed with an adaptation of point-mass 
trajectory

analysis of exterior ballistics. The basic equations are:

dx - p d 2
dt x I- C v cosO
t2 8m D

2 2

8m CD v sin e -g

where

x = down-range coordinate

y = vertical coordinate

p = density of air

d = diameter of projectile

m = mass of projectile

CD = drag coefficient

v = velocity of projectile i t 2 )2

0 = angle of trajectory with horizontal

g = acceleration due to gravity

Initially,

dx
L-, (0) = v Cos 0

dt0 0

(0) =v sin 0

dt o o
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The trajectory is calculated with variations of vo, 0, m in order to

determine the change in impact point at the given range of interest

(ranges considered were 1000 and 2000 m).

Yaw and yaw-rate effects were analyzed with techniques adapted

from Reference 1*. The effect of an initial yaw or yaw rate is properly

analyzed by considering the motion of the projectile in a six-degree-of-

freedom representation; however, an approximation to the change in the angle

of departure is:

CL

j C mv d y x oM( o Yx o

which is positive up (real term) and left (imaginary term), where 6 and

60 are complex values and where:

CL = lift coefficient

Cla = moment coefficient

I = transverse moment of inertia
Y

I = axial moment of inertiax

s = yaw rate of projectile

Po M spin rate of projectile

This, of course, represents a dispersion source whose result can have a

component in the horizontal direction perpendicular to the line of sight. By

the nature of its definition, this formulation of aerodynamic jump represents

an upper bound on the actual effect of yaw when the impact point is less than

the maximum range of the ammunition.

References are given at the end of the report.
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Throw-off, in which the launch mechanism imparts a lateral

velocity to the center of gravity of the projectile, is handled by adding

a component to the appropriate initial velocity component. It is .assumed

that the velocity component in the deflection (horizontal) direction is

small and can be neglected for drag computations.

Projectile characteristics used in this study were taken from

Reference 2. For reference, some of the values and curves have been

reproduced in the Appendix.

DISCUSSION OF DISPERSION-CAUSING FACTORS

Yaw of the Projectile at Launch

Table 1 gives the difference in impact point at 1000 and 2000 m

for given yaw of the projectile at launch. As can be seen from Table 1,

small initial yaw angles give relatively small deflections downrange,

amounting to up to 0.013 mrad for an initial yaw of 0.4 mrad, or 0.0230.

These deflections scale with initial yaw, as long a- the values of initial

ydw remain reasonably small. A yaw of 1 mrad to the right, for example,

causes a downward deflection of 31.4 mm at a range of 1000 m.

Yaw of the projectile at launch can be caused by a number of

factors. If, for example, the gun is moving lateral to the direction of

fire at a velocity which is not negligible relative to the muzzle velocity,

yaw will occur. This occurs in low-performance, side-firing aircraft cannon,

but not in the configuration of the LODACS weapon. Even if the LODACS gun

turns out to be a Gatling gun, an 8-in.-diameter, six-barrel cluster firing

2000 rounds per minute, the associated yaw is repeatable fQr every round

and is about 3 mrad for 3500 ft/sec muzzle velocity. Unlikely as this

choice is because of other considerations, the lateral velocity of the

projectile at the muzzle will greatly exceed anticipated levels of a single-

barrel concept, and still will not cause large random deflection. However,

throw-off associated with this lateral velocity can cause significant

deflections. This will be discussed subsequently.
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TABLE 1. EFFECT OF PROJECTILE YAW ON IMPACT POINT

Errors in Impact Point, mm
Yaw, mrad 1000 m 2000 m

Up Left 6y 6z 6y 6z

-0.2 0. 0. 6.28 0. 15.26

-0.14 -0.14 - 3.79 4.44 - 7.58 10.79

0. -0.2 - 5.36 0. -10.72 0

0.14 -0.14 - 3.79 - 4.44 - 7.58 -10.79

0.2 0. - 6.28 0. -15.26

0.14 0.14 3.79 - 4.44 7.58 -10.79

0. 0.2 5 .36 0. 10.72 0.

-0.14 0.14 3.79 4.44 7.58 10.79

-0.4 0. 0. 12.56 0. 30.52

-0.28 -0.28 - 7.58 8.88 -15.17 21.58

0. -0.4 -10.72 0. -21.45 0.

0.28 -0.28 - 7.58 - 8.88 -15.17 -21.58

0.4 0. 0. -12.56 0. -30.52

0.28 0.28 7.58 - 8.88 15.15 -21.58

0. 0.4 10.72 0. 21.43 0.

-0.28 0.28 7.58 8.88 15.15 21.58
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Another cause of yaw is loose fit between projectile and bore, as

illustrated in Figure 1 (Reference 3). The degree of yaw is a function of

the length, L, of the main body from the bourrelet to the beginning of the

boat-tail, and of the difference,. d, between the projectile diameter and

the bore. The yaw 0 is then:

d/L = tan 0 = 0

It has been observed in the Rarden gun that d is negligible. If L is taken

as 45.6 mm and d is assumed to be 0.0456 mm, initial yaw is 0.1 mrad. In
(8)larger shell , yaw of 4.5 mrad has been observed prior to 5-msec travel

in-bore. Yaw this ]arge can cause a significant contribution to dispersion

in the aerodynamic jump representation used.

d = x+ AXIS OF TUBE

~I{
-J

d

FIGURE 1. COMBINED EFFECTS OF CLEARANCE AND ECCENTRICITY

In a similar way, the projectile can be improperly seated in the forcing

cone, one side of the rotating band being fully engaged, the other side not in

full contact, and the projectile accordingly cocked. Since the rotating band
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is 0.9 mm deep, this corresponds to a yaw of, at most, 20 mrad; if the engraving

is P.3 mm off-center, there is a resulting deflection at 1000 m of 17.8 mm.

The maximum values of this parameter should be established by test to

verify that no pathological conditions exist, but large contributors to disper-

sion from aerodynamic factors associated with initial yaw will probably not be

encountered. Another yaw-related phenomenon will be discussed later.

Initial Yaw Rate of the Projectile

The effect of initial yaw rate on dispersion is displayed in

Table 2. As can be seen, the effect is considerably less than. that of yaw.

Yaw rate is caused by balloting of the projectile upon exit from the muzzle,

from tip-off of the projectile by a laterally accelerating muzzle, and by

muzzle acceleration.
. .. (4)

A balloting projectile representation applied to the Rarden

suggests that the yaw rate is X.5 mrad/sec which does not produce signif-

icant dispersion. On the other hand, tip-off produces a yaw rate due to

acceleration on the projectile after the center of gravity has cleared the

muzzle, as illustrated in Figure 2. If r is the distance from the center

of gravity to the start of the boat-tail, the associated yaw rate is a

function of r/v . Since no significant lateral acceleration is observed

in the Rarden during shot ejection and v is small, the yaw rate will 'be
0

small, as will the dispersion associated with it. In future designs, if

a projectile is considered with a long distance between bore contacts,

these considerations will have to be reopened.

r

FIGURE 2. TIP-OFF OF PROJECTILE BY LATERAL MOTION OF MUZZLE
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TABLE 2. EFFECT OF PROJECTILE YAW RATE ON IMPACT POINT

Yaw Rate, Errors in Impact Point, mm
mrad/sec 1000 m 2000 m.

Up Left 6y, mm 6z mm 6y, mm 6z, mm

-0.4 0. -0.01 -- -0.02 0.

-0.28 -0.28 -0.01 -0.01 -0.02 -0.02

0. -0.4 0.. -0.01 0. -0.03

0.28 -0.28 0.01 -0.01- 0.02 -0.02

0.4 0. 0.01 -- 0.02 0.

0.28 0.28 0.01 0.01 0.02 0.02

0. 0.4 -- 0.01 0. 0.02

-0.28 0.28 -0.01 0.01 -0.02 0.01

-0.8 0. -0.02 0. -0.05 0.

-0.56 -0.56 -0.02 -0.02 -0.03 '-0.05

0. -0.8 0. -0.03 0. -0.06

0.56 -0.56 0.02 -0.02 0.03 -0.05

0.8 0. 0.02 0. 0.05 0.

0.56 0.56 0.02 0.02 0.03 0.05

0. 0.8 0. 0.03 0. 0.06

-0.56 0.56 -0.02 0.02 -0.03 0.05
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Effects of Variation in Muzzle Velocity

Results of variation in muzzle velocity are displayed in Figure

3 for 1000 and 2000-m range. Note that two different scales are used in

the graph, and that results do not scale with range. This is basically

because of the greater gravity drop for the longer time of flight at 2000 m.

Note also that, while this is not a significant error source at close ranges,

it becomes significant at long ranges. Moreover, recent tests of the Rarden

system indicate a round-to-round spread in muzzle velocity of 25.9 ft/sec.

If this represents a standard deviation of 7 m/sec, a typical dispersion

could be 1/3 mrad at 2000 m, which is significant. Moreover, if the round-

to-round variation proves to be the trend, these observations could indicate

a need for an effort to reduce muzzle-velocity variation.

Fire-Control Influence

One of the time-honored adages in system design is that fire

control can neither improve nor worsen the dispersion of an automatic cannon.

In the case of LODACS, however, a firing rate of 90 shots per minute and a

burst size of seven rounds requires 2 seconds of4%z(ng time. If, during

the firing of the burst, because of system reaction to firing, aim wander,

or any other factor, the fire control inappropriately influences the aim

point, the results could be interpreted as dispersion. Therefore, a test

program which is concerned with small dispersion and its causes must at all

times monitor the influence of fire control during firing.

Effect of Variation in Projectile Mass

The effect of variation in projectile mass is displayed in Figure

4. A typical value for the variation in projectile mass, according to

Reference 1, is 0.25 percent. For the Rarden round, this is 0.9 g. Note

that considerably larger deviations result in negligible influences or

error in impact point.

480



0.4 10.08
0.3- 1000m -0.06

0.2- 0.04

0.1 0:.02
E E

&0 0
0 00 0

0. 000 -

E

,: -0.1- -0.02

0 0

7E -0.2- -- 004

-0.3- -0.06

1000M

-0.4 -- 0.08

-0.5- -0.10

-0.6 -8 - 40-012

Muzzle Velocity Variation,m/sec

FIGURE 3. EFFECT OF VARIATION IN MUZZLE VELOCITY ON IMPACT POINT
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FIGURE 4. EFFECT OF PROJECTILE MASS VARIATION ON IMPACT POINT
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Effect of Lateral Throw-Off of Projectile

The effect of lateral throw-off of the projectile is shown in Table

3. As seen in this table, a lateral velocity of 300 mm/sec on launch can cause

a deflection of up to 325 mm, or 0.325 mrad, at 1000 m. A muzzle disturbance

of this size can be a significant error source. If, however, lateral motion

is small at the time of projection, throw-off is a small, even negligible

contributor to dispersion.

The lateral motion of the projectile can be caused by a number of

factors, including:

* Rigid body rotation of

- Vehicle relative to the ground

- Gun relative to the vehicle

- Barrel relative to the gun

* Barrel whip

* Eccentricity of a spinning projectile (effect of the
center of mass not lying at center of in-bore rotation
with resultant lateral velocity upon exit from muzzle).

The Rarden has been instrumented during burst firing from a vehicle.

Based on the first series of such tests, gross motion of the muzzle is small

at times of shot ejection for rounds in a burst subsequent to the first.

Lateral motion for the first round is virtually zero. This effect is not

observed in other weapons, however. Depending upon how much the centerline

of the bore is off from the mount trunnions, and on how much rigidity there

is in the elevating struts, a mount reaction can exist which causes a rigid

body motion of the barrel before shot ejection. This has been observed in the
(6)90-mm tank gun ( . The point is that, even though not observed in the Rarden,

rigid body rotation of the barrel is a possible contributor to dispersion.

A similar observation can be made concerning throw-off due to barrel

whip in the Rarden. If the dynamic response of the barrel due to firing loads
-bmt

is generally described as a sum of functions of the form y(x,t) = A em

sin w Mt cos mx except for phase angles, with y the deflection and the sub-

script m denoting each mode. The parameters of interest then become dy/dt
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TABLE 3. EFFECT OF THROW-OFF ON PROJECTILE IMPACT POINT

Error in Impact Point, mm

Throw-Off, mm/sec 1000 m 2000 m

6y Uy6y .6z

100. 0. 92.59 0. 185.13 0.

70.71 70.71 65.47 76.7 130.91 186.37

0. 100. 0. 108.47 0. 263.57

- 70.71 70.71 - 65.47 76.7 -130.91 186.37

-100. 0. -92.59 0. -185.13 --

- 70.71 - 70.71 - 65.47 - 76.7 -130.91 -186.37

0. -100. 0. -108.47 0. -263.57

70.71 - 70.71 65.47 - 76.7 130.91 -186.37

200. 0. 185.18 0. 370.27 0.

141.4 141.4 130.94 153.40 261.82 372.74

0. 200. 0. 216.94 0. 527.14

-141.4 141.4 -130.94 153.40 -261.82 372.74

-200. 0. -178.27 0. -370.27 0.

-141.4 -141.4 -130.94 -153.40 -261.82 -372.74

0. -200. 0. -216,94 0. -527.14

141.4 -141.4 130.94 -153.40 261.82 -372.74

300. -- 277.77 0. 559.4 0.

212.13 212.13 196.41 230.10 392.73 559.12

0. 300. 0. 325.42 0. 790.71

-212.13 212.13 -179.51 230.00 -392.73 559.12

-300. 0. -260.86 0. -538.01 0.

-212.13 -212.13 -179.51 -230. -392.73 -559.11

0. -300. 0. -325.42 0. -790.71

212.13 -212.13 196.41. -230.10 392.73 -559.12
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2 '2
for throw-off. For tip-off, the parameter d y/dt is of interest. In a

subsequent section, the slope of the barrel dy/dx will be discussed. Although

the modes are not known for the Rarden gun, this type of analysis might yield

some insight into the throw-6ff. The presence of the damping pads could

conceivably cause a greater throw-off contribution at the muzzle than is common.

The mode shape that might be observed could be as in-Figure 5.

Barrel
flexure Damping

F1

FIGURE 5. POSSIBLE BARREL-MODE SHAPE DUE TO
PRESENCE OF DAMPING PADS

Eccentricity of the projectile is a source of throw-off error. This

is caused by the center of mass of the projectile not lying on the axis of
rotation during in-bore acceleration. Upon exit from the muzzle, center of

rotation moves to the center of mass. In the transition, there is a lateral

velocity imparted which is a function in magnitude of the angular rate of

rotation and the distance from the center of mass to the in-bore center of

rotation. The direction is a function of the orientation of the center of

mass on exit from the muzzle. If the mass eccentricity is 0.026 mm from the

centerline, if the twist is one turn in 30 calibers, and if the muzzle velocity

is 1090 m/sec, the throw-off will be 200 mm/sec. Further comment on this

source of dispersion will be made in the section, "Eccentricity of Projectiles".

Another cause of throw-off is related to in-bore yaw of the projec-

tile. In this case, the yawed projectile effectively has its center of mass

off the centerline of the tube. In a manner like the throw-off resulting

from the eccentric projectile, a lateral velocity can occur upon exit from

the muzzle. In a large shell (Reference 3), this can be comparable to the

magnitude of the eccentricity throw-off. At 2 mrad in in-bore yaw, the
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moment arm throw-off of the Rardeh round is 0.6 m/sec. This is based on a

yaw condition in which the front edge of the boat-tail and the rear edge of

the ogive are in contact with the bore. However, it is possible for a pro-

jectile yaw to exist without the center of mass being off the centerline of

the bore. If this occurs, this contribution to throw-off and, hence, to

dispersion, is zero. There is, thus, considerable latitude for the yaw

parameter to influence dispersion. In one reference (Reference 5) it is

shown that the yaw throw-off in a 37-mm proof slug is an order of magnitude

greater than aerodynamic jump. In another reference (Reference 3) the two

phenomena contribute about equally for a 175-mm artillery round.

To summarize, throw-off is not an error source which can be ignored.

Its causes are varied and include dynamic system response to firing loads,

barrel whip and yaw, and eccentricity of the projectile. Attention should be

given to each of these sources of throw-off error for a low dispersion system.

Launch-Angle Error

Variation in orientation of the barrel from round to round, of

course, is traditionally considered to be the prime source of dispersion. The

Rarden data available for this effort did not include sufficient muzzle-position

data for burst fire to shed light on the changing angle of departure. Parametric

variation of this parameter is indicated in Table 4. This table indicates

little more than the approximation used in many weapon systems analyses: a

small angular error at the gun causes a comparable angular error at the target.

The degree to which the various causes contribute to angular error are being

investigated in ARMCOM and BRL efforts. The following is a discussion of

error phenomena and possible orders of magnitude.

Dynamic Response

Dynamic response of the vehicle is a common source of dispersion. In

this case, the response of the vehicle's suspension due to firing a previous

round or rounds has not damped out at the time of fire of a subsequent round.

In the Rarden, the rate of fire is such that the vehicle response may be

damped out. This should, in any case, be verified. However, for fire-on-the-move,
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TABLE 4. EFFECT OF LAUNCH-ANGLE ERROR ON

PROJECTILE IMPACT

Error in Impact Points,

Launch Angle mm

Error, 'SO 1000 m, 2000 m,

mrad 6 y

-0O.14 -140 -279.92

-0.12 -120 -239.93

-0.10 -100 -199.95

-0.08 -80 -159.96

-0.06 -60 -119.97

-0.04 -4o - 79.98

-0.02 -20 - 39.99

0.02 20 39.99

0.04 40 79.98

0.06 60 119.97

0.08 80 159.96
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the low rate of fire can allow a dispersionlike effect to be observed due to

a changing orientation .of the vehicle and errors in the stabilization during

the firing of a burst.

Mount Motion

A report by Gay and Elder(6 ) includes a simple model of mount

dynamics for a 90-mm tank cannon. Although not general, it includes some

aspects of the problem which could bear on dispersion in a LODACS configuration.

In this representation,

I = moment of inertia of weapon about trunnions,w

e = angular rotation,

= vertical distance from center of gravity of recoiling
mass to centerline of 'bore,

A = area of bore,

P(t) = powder pressure,

and force of elevating strut is neglected as small compared to powder pressure.

Thus:

I 0 = EAP(t),
w

or t

0(t) I P(t)dt,
wJ

and

Iw t

As an approximation,

A f P(t)dt= w
.,c) v

g
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where T is time projectile is ejected, w and w are weights of projectile andp c

charge, respectively, and v is muzzle velocity of projectile. Using thisP
approximation,

P(t)dtdt W + 2 vdt

+Wc J dx
2 t dt

= + c L
(p g ,g

where L is length of projectile travel in bore. Then,W v
0(T) = w _Iw p 2 g

(T) p y + 2 -
w

Thus, under this model, there could be a reaction before shot ejection which

contributes to dispersion. By adding a damping term and changing moments and

geometry, one could look at the effect of mount dynamics at the time of the next

round. It is the author's understanding that such an investigation is under-

way for the Rarden mount; if not, it should be undertaken. Using numbers

motivated by the Rarden gun (e = 2.54 cm, I = 71.3 kg/m 2 , W = 360 g, W =
w p c

160 g, v = 3580 ft/sec, L = 244 cm, T = 0.0048 sec), one finds that thep
angular rate is 0.4 rad/sec and the angular displacement is 0.4 mrad. Notc

that the angular rate thus determined corresponds to a linear velocity at

the muzzle, a source of dispersion discussed in a previous section.

Motion of the Barrel

Barrel flexure as a cause of both lateral motion and angular change

of the muzzle at shot ejection is being investigated by ARMCOM. This area is
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an important dispersion source and its investigation should be encouraged. The
following discussion is intended as a commentary on the problem. Definitive
analysis is deferred to either a follow-on effort or the on-going ARMCOM

investigations. The significant aspect of the on-going efforts is the presence

and effect of damping pads on the Rarden Gun. These pads can greatly alter mode

shapes of the response, and are not considered in any of the references used

in this effort.

The reaction of the tube to an angular loading at the breech has been
(6)

analyzed by Gay and Elder for a 90-mm tank gun. In this representation,

a2  2
- El (x) + P1! = 1j(x-X)

ax2 ax2  at2

where

y = deflection of barrel

x = distance along barrel

E = Young's modulus

I(x) = area moment of inertia

p(x) = mass of beam per unit length

0 = rotation of breech

= distance to start of flexible portion of barrel

The complete solution of the forced vibration is given by:

Y = n Y( q n(t)

where

Y = the normal functions
n

q = the generalized coordinates.

Although the response is influenced hy the presence of a muzzle device, the first

teveral mode shapes are as illustrated in Figure 6. These mode shapes correspond

to slopes of the barrel at the muzzle of the sort presented in Table 5 for the
(6)90-mm tank gun

490

Lj _ _ __ _ _ _



- *n~rVAT" WoizZLE EPPIT

W3461RA/

FIGURE 6. FUNCTIONS AND FREQUENCIES
OF LATERAL VIBRATION

491.



TABLE 5. FIRST FIVE MODES III LARGE-CALIBER
BARREL RESPONSE

Frequency,

Mode rad/sec Slope

1 105.6 0.0118

2 489 0.0373
3 1208 0.0605

4 2282 0.0846

5 3757 0.1095

For the Rarden, however, the presence of the damping pads can cause a mode shape

as discussed in the previous section and illustrated in Figure 5. It is

conceivable that either the slope of a lower mode could be higher or, more likely,

a higher lateral velocity could be present.

The effect of droop of the barrel (or any curvature of the barrel

such as dynamic response remaining from previous rounds) can be a contributor

to an impact point other than intended. If the droop condition changes from
(5)

round to round during a burst, a dispersion effect can develop. Darpas has

analyzed the effect of droop by representing the barrel as a cantilever beam and

calculating the radius of curvature at the muzzle. The lateral force on the

projectile due to this curvature is then calculated. This force is:

MP 1. v
F 2EI

where p is the weight of the tube per unit length. A Rarden projectile can be

expected to exert a significant force on the barrel. In other cannon, this

phenomenon has been observed to influence the position of the muzzle prior to

shot ejection . In the Rarden, no such motion is observed, but a pronounced

motion is observed immediately after exit of the projectile.

In an analogous way, a projectile whose center of mass does not

coincide with its center line exerts a centrifugal force on the barrel as it is

traversed by the rotating-barrel.

A report by Elder (3) discusses some of the dispersion sources, which

are discussed in this and other sections, for a 175-mm gun. Bearing in mind
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that this is strictly one shot, and that the particular forces involved (such

as those associated with projectile eccentricity) may be out of proportion to

lower caliber guns, the breakdown of dispersion sources is still interesting.

For Zone 3, for example, a total error of 1.62 mrad is observed consisting of

0.36-mrad angular change, 0.72-mrad transverse muzzle motion, 0.54-mrad throw-

off due to eccentricity, and 0.43-mrad aerodynamic jump. Firing in a burst

mode would certainly not make the contribution of angular change and transverse

muzzle motion smaller, but would probably not greatly affect the other sources.

Eccentricity of Projectile

The effect of eccentric projectiles and the effect of eccentricity

on dispersion was not addressed in this effort. This phenomenon certainly

occurs, and probably contributes a measurable factor to dispersion particularly

at long ranges. However, as mentioned in the introduction, Mann barrel

ammunition dispersion is quite small. Since this includes projectile eccen-

tricity effects, both in the sense of aerodynamic factors and the throw-off

discussed earlier, it is argued that eccentricity of the projectile does not

offer a significant contribution to dispersion.

SUMMARY AND COMMENTARY ON DISPERSION SOURCES

Without having considered the Rarden system in great detail,

suggestions of an error budget for that concept would be conjectural at best.

Based on the investigations of parameters motivated by Rarden, the following

observations are made as to principal causes of dispersion.

Several causes of dispersion are seen as not being particularly

large. These include aerodynamic jump due to in-bore yaw and yaw rate. Also

seen as not being large are variations in projectile mass. In a precision

system, change of effective aim point during a long burst should be at worst a

small effect. At short range (less than 500 m), variation in muzzle velocity

should have a small effect.

More significant dispersion sources include the effect of throw-off

of the projectile upon exit from the muzzle. This can be either a yaw effect
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(possibly only a small contributor) or the effect of barrel motion. At long

ranges, variation in muzzle velocity will have an effect on dispersion. The

effect of launch-angle variation is related to throw-off and is probably the

most significant factor in dispersion.

It is observed that the dispersion-causing effects all have

identifiable directions for the observed dispersion at the target, given the

conditions at the gun. Variation in muzzle velocity, for example, is an effect

which is observed in a vertical orientation. On the other hand, throw-off can

conceivably occur in any direction. However, the mounting configuration of

the Rarden, and of most guns, is such that most of the barrel motion occurs

in the vertical plane. Muzzle velocity variation, projectile-mass variation,

most of throw-off and most of launch angle deviation all occur in the vertical

direction.

Over large numbers of rounds fired, effects of yaw and yaw rate

will probably exhibit groupings of impact points, for firings at the same

range, and with the contribution of other factors accounted for. These

groupings will be a result of a discrete number of initial yaw and yaw-rate

conditions, caused by the position of the rifling in the barrel. It may be

possible to identify a nonra lom factor in yaw-related errors, such as a

correlation between orientation of the barrel on shot ejection and a particular

grouping at impact. An observation of this sort could be evidence of a

projectile-induced barrel response. An attempt should be made to perform a

statistical analysis of data-to determine whether any such correlations exist.

Some of these activities are being pursued in the pr.esent LODACS program but

are cited here as recognition of the need for the effort.

There are several areas that deserve attention for determining

dispersion-causing factors for the LODACS concept:

* The work currently underway to investigate barrel
response to the firing of a burst should be encouraged
and pursued. This effort should be coordinated with
testing to validate the analytical representation and
in this manner gain insight into barrel-related causes
of dispersion.

* Although not expected to be a significant source of
dispersion, tests to determine yaw and yaw rate should
be conducted.

494



* Statistical analysis should be performed .on available
data on firings to date to determine whether any known
correlation exists among dispersion-causing parameters
and observed impact points.

The effort reported here was intended as only an initial look at the

problem. There are a few ways in which the analysis can be extended to provide

meaningful insight into the dispersion of a LODACS concept. First, the

adequacy of the aerodynamic jump formulation needs to be verified with a six-

degree-of-freedom representation of this problem; this has an impact on the

conclusicn that projectile in-bore yaw is not a large dispersion source.

Second, additional test data from efforts concurrent to this investigation

can be used to extend the basis of the analysis in the LODACS concept. Third,

the ammunition should be inspected to insure variations in projectile mass and

symmetry are known before firing. But mcst importantly, this effort did not

consider the cross-coupling effects of two or more phenomena simultaneously.

What, for example, is the effect of concurrent throw-off and yaw; or of the

projectile imbalance and a variation in muzzle velocity? The investigation of

these cross-coupled phenomena can be of significant benefit in subsequent

analysis of test results and in the attempt to understand what events occurred

on a given burst during system testing.
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I. INTRODUCTION

Recent efforts to model gun tube motion, projectile motion and momentum

transfer from gun tube to projectile at muzzle exit have made the measurement

of gun tube motion more important from the standpoint of validation of models

and determining initial conditions for aeroballistic flight.

Although previous measurements have been successfully made by using

various optical techniques, these techniques do not lend themselves to rapid

implementation in the field and are generally limited to horizontal firings.

The following is a discussion of current investigation into the use of

accelerometers to measure the motion of a gun muzzle during the interior

ballistic cycle.

II. LOCAL TUBE MOTION

The accelerations at a station along a gun can be described in terms of a

moving Cartesian coordinate system with its origin on the centerline of the tube

and in the transverse plane of the station. Figure 1 shows the coordinate system

with an accelerometer positioned on the circumference of the tube. The

sensitivity of the acceleroneter is described by the vector, S; the accelerometer

position is described by the vector, P, emanating from the origin of the tube

coordinate system to the accelerometer coordinate system.

The unit vectors of the accelerometer coordinate system are assumed to
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remain co-parallel wix;h the tube coordinate system. The position of the tube

coordinate system is defined by vector, R, which emanates from the origin of

an arbitrary fixed reference coordinate system that is initially co-parallel

with the tube coordinate system. The tube coordinate system is assumed to

translate and rotate with respect to the reference coordinate system with

time.

The motion of the accelerometer can be described by taking the second

time derivative of the position vector

L = R + P = R + p + (1)

where R = the tube position vector, a function of time, t

p = the nominal accelerometer position vector, a constant

= the local deformation vector due to local stresses at the

accelerometer position, a function of time

It can be shownI that the second derivative with respect to time is

2  at
(2)

where w= w1 i + W 2i + w3k

In order to m-nimize the number of terms in the expansion of equation (2)

the position vector p is chosen so that it coincides with one of the unit vectors

i, j, k. For the purpose of this discussion, we set

= -' P2 = P3 = 0 (3)

Next we must examine the sources for the local displacement vector S. The

local displacement vector is composed of:
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o Radial displacement due to the Poisson effe-ct in respc-se to

the longitudinal and torsional strains in the tube generated from the tube

recoil body forces.

o Radial displacement generated by the passage of the projectile

and propellant gas loadings

o Orthogonal displacement components due to the longitudinal,

dilational and torsional strain waves propagated in the tube.

These components have properties that make data separation and analysis

quite amenable:

o Radial displacements due to the Poisson effect can be eliminated

from the data by proper orientation of the primary sensitivity axis of the

accelerometer.

o Radial displacement generated by the passage of the projectile

can be eliminated by proper filtering techniques; these components are pulses

in the 14KHz frequency regime for the test series under investigation.

o The displacement generated by stress waves are pulses in the

frequeicy regime above 20Kl1z and are also amenable to filtering techniques.

By filtering out components above a nominal 10Khz which is well above

the 26th mode of vibration of the gun tube 6 can be assumed to be

o =l (4)

In addition, 6 is due to tube body forces and is approximately three

orders of magnitude smaller than the acceleration of the gun tube and can be

neglected.

Thus equation (2) expands to the following expression,
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2 2 -A (R + w pl + w 2P)i + (R2 + W3pI - 2wIPl) j

(R3 - w2P l - w3Pl) k" (5)

III. ACCELEROMETER SENSITIVITY

The vector S is defined as

s I I + s2j + (6)

Ideally, the accelerometer sensitivity can be defined

= (7)

where s, = s3 = 0.

However, the cross axis senisitivity of a piezoelectric accelerometer

follows a cosine law2 where

2 +2 2S I 1 S53  = s 2

400 (8)

for a nominal cross axis sensitivity of five percent.

In the case of the gun tube vibration problem to be discussed later,

the acceleration components are of the same order of magnitude thus we can use

equation (7) by assuming a + five percent error in the measurement. This error

could be minimized if accelerometers were calibrated to determine the secondary

and tertiary axes of sensitivity.

IV. ACCELEROMETER OUTPUT

Using equation (7) and equation (5) the accelerometer output is as follows:

C = S • A = s 2 (R2 + W 3p1 - W2 1 1 ) (9)

Figure 2 shows schematically the physical arrangement of the accelerometer

and tube.

V. ANALYSIS

In order to separate the translational and rotational terms ii, equation

(9), accelerometers are used in pairs as shown in Figure 3.
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The-output of the two accelerometers are shown below

Ca
Ca S a(R 2 + w3 p1 2 w 1 p1). ±5

Cb = 5b (-R2 + p 3 2 lPl) ± 5% (10)

By differencing the two outputs and collecting terms, We get

R 2± (11)
22 b (a b)

By.summing the two outputs and collecting terms, we obtain

03 -0 +23 = +S%3 21 2(12)

For the case shown in Figure 3

W5 = torsional acceleration about the tube centerline

p = outside radius of the tube

R = horizontal translational acceleration of the tube.

By adding a second pair of accelerometers mounted in the same fashion as

the first pair and at the same station along the tube with their position vector

coincident with the J axis, a second set of equations are similarly derived.

R12( - Cd (13)

R1 3 + 1 2 SS (4

d

By summing the outputs of the four accelerometers the following relation-

ship is obtained

1 (lC+Cb C + Cd ±- + ~ (15)
3 4p Sa SC T

The four accelerometer array is shown in Figure 4.
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VI. THE MEASUREMENTS

Preliminary measurements of the lateral motion of the M68 tank gun were

made using a pair of triaxial accelerometers. The data for y-axis (horizontal)

were recorded and analyzed. The configuration used was that shown in Figure 3.

Using the previous discussed analyses as a basis for data reduction, the

accelerometer outputs were filtered through a 20KHz pass filter and a 10KHz

low pass filter. These filtered data showed that components of acceleration in

this frequency regime were negligible and that the prime data lay below l0KHz.

A considerable amount of high frequency data was evident starting above

25KHz. The high frequency components must be considered when establishing

accelerometer requirements.

Once the data were in the form shown in equation 11 they were integrated

twice with respect to time to obtain displacement versus time. Figure 5 shows

the horizontal acceleration data; Figure 6 shows the horizontal velocity data;

Figure 7 shows the horizontal displacement data.

These preliminary tests results were compared with calculated results from

a computerized gun vibration model.

Although the general character of the displacement-time data is similar

to the model predictions, amplitudes were not in agreement. Before a definitive

statement as to the validity of the data and the accuracy of the model can be

made, a series of comparative tests must be made. In progress at the BRL is a

series of tests to compare the accelerometer measurements with direct optical

measurement of displacement versus time.

VII. OPTICAL MEASUREMENTS

Concurrent with accelerometer measurements using the four element array

shown in Figure 4, three electrm-optical systems for measuring dTsplacement are

being used to measure thee ele motion of a 37mm test cannon. The electro
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optical system is a servo controlled photo multiplier system that provides

an output voltage linearly proportional to the displacement of target normal

to the line of sight of the instrument. By using three systems, the two

orthogonal lateral displacements and angular displacement about the gun axis

can be measured. At this writing tests and data reduction have not been

completed. The new data will be presented at the workshop.

VIII. SUMMARY

Analysis of six degree of freedom response of accelerometers shows that

particular arrays of four accelerometers can yield the two translational

cross-axis components and the coaxial rotational component of muzzle motion.

Preliminary tests and current test series for the technique have made the

following accomplishments

o Improved mounting techniques for gun application

o Improved filtering technique for data reduction

o Established accelerometer requirements such as response and capacity

o Data reduction package has been developed

The accuracy and precision of the technique with "off the shelf" commercial

components is currently being determined; the advances in the "state-of-the-art"

in accelerometry, particularly calibration, required to increase the accuracy are

being determined. In addition to gun tube motion, application of these

techniques are being examined for projectile measurements.

I5
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Results may be summarized as follows:

Bonded.accelormeters have been used successfully by using a highly flexible

epoxy bonding agent. The main problem, particularly in small caliber

tests, is that the bonding agent: must be insensitive to shock loading.

Filtering systems most applicable to these types of measurements must

have constant time delays over the band pass of the filter and must be

inserted between the sensor and data conditioning electronics to

minimize distortion in the multiplex and recording systems one might use.

One of the major difficulties in using accelerometers is the zero shift

experienced during measurement. To alleviate zero shift problems, high

range shock accelerometers are required with some sacrifice of sensitivity.

Sensitivity can be regained by using the state of the art solid state

charge amplifiers which exhibit much improved stability and noise rejection

at high gains.

Recent tests show that to establish potential accuracy for accelerometer

measuring systems, comparative tests using long lever arm optical systems,

such as the Oddsam System to be discussed by B.T. Haug later this morning

and accelerometers having known crossaxis response must be conducted.

Efforts to obtain the desired accelerometers with the required calibration

information are now in progress.

In order to extend the usefulness of existing equipment, mathematical

techniques for eliminating zero shifts in the data are being made to

characterize the zero shifts and determine the limits of such character-

ization.
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SUMMARY

A dynamic simulation has been developed for describing

the angular distortion of a slender penetrator contained

within an armor piercing projectile as it traverses the

length of a gun barrel. The dynamic model considers

flexing of the penetrator under the influence of accel-

eration and centrifugal forces. Linear accelerations of

70000 g's and spin rates of 120000 revolutions per minute

are encountered by the projectile. The high spin rate is

required for gyroscopic stability. The penetrator is con-

strained by linear springs which represent the support of

the penetrator by the carrier and the complete projectile

by the barrel. This simulation has been coupled to ex-

terior ballistics programs in order that thereffect of

this deflection on round to round launch yaw and disper-

sion can be predicted. Dispersion data has been gathered

for several different penetrator configurations and the

results have compared favorably with dynamic simulation

predictions.
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INTRODUCTION AND BACKGROUND

An Armor Piercing Projectile has been developed for use with the GAU-8/A

Gun *System and A1O Close Air Support Aircraft. The Armor Piercing Projectile

(AP) is part of an ammunition family also consisting of Target Practice and

High Explosive Projectiles.

During phases of full scale development of the AP, considerable dispersion

(Mann Barrel) was encountered. The AP contains a depleted uranium core to

enhance penetration. Normal "Jump" type computations, even assuming excessive

clearance (bore to barrel) and bourrelet engraving did not account for the

observed large first maximum yaws and subsequent large dispersions.

The program schedule and the performance requirements (penetration)

provided considerable constraints on the problem solving phase and, in effect,

ruled out an extended cut and try approach.

The following factors were considered possible causes of poor performance:

1) Spin rate - penetrator flexing resonance

2) Structural failure of the carrier (massive engraving)

3) Penetrator deflection (bending)

Eglin Air Force Base photographed by X-ray an early design which showed

considerable distortion. General Electric constructed steel bourrelet carriers

which exhibited no engraving, but still excessive dispersion.

At this point, General Electric concentrated on penetrator deflection as

the probable cause and set out to develop an analytical model which could be

used as a design tool.
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THEORETICAL FORMULATION

A. Mathematical Modeling

The basic assumptions made in developing the mathematical model follow:

1. The projectile is loaded at its base with a uniformly

distributed pressure acting in the direction of the

barrel centerline.

2. Lateral support is provided by linear springs.

3. The projectile is initially misaligned with the barrel axis.

The initial misalignment of the penetrator with the barrel axis is illus-

trated in Figure 1. The parameters used to position the penetrator relative

to the barrel and projectile are:

Xp = projectile base thicKness to penetrator

YT = total base offset of penetrator

aT = total misalignment angle of penetrator

The base offset and misalignment angle, YT and aT 9 are made up of two com-

ponents as illustrated in Figure 1. The components are due to barrel versus

projectile diameter (tolerances) and manufacturing tolerances involved in

assembling the penetrator and carrier.

Structural modeling of the penetrator is done using a lumped mass finite

element technique. Using this technique a stiffness matrix, K, is formed which

describes the deflection of any element in terms of the forces and moments

acting on that element. Deflections in translation and rotation are considered

with shear effects being included. Figure 2 illustrates the mathematical model-

ing and rorcing functions. The system of differential equations (one for each

degree of freedom) describing the transient response of the penetrator follows.

[M] [ic + [K] XI = J'FJ (1)
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where:

[ = mass matrix

[x = displacements in translation and rotation
for each node

["] =4d"2 idt

[K] = structural stiffness matrix

[F] = external forces and moments acting at
each node.

The external forces and moments are computed as follows. The axial acceler-

ation of the projectile results in bending moments on each element of the pene-

trator due to its misalignment. The angular velocity results in centrifugal

forces on each element due to offset of the elements from the barrel centerline.

The acceleration and spin profiles used are based on an interior ballistics

simulation.

Theoretical verification of the dynamic simulation was accomplished in two

phases: (1) verification of the numerical integration technique, and (2) static

verification of the structural model. Three numerical integration techniques

were employed for comparison of efficiency and accuracy: (1) constant velocity

or lumped impulse procedure, (2) Hombolt's approximation, and (3) fourth order

Runge-Kutta. The results indicated comparable accuracies due to the nature of

the differential equations and external forces. It was therefore concluded that

the lumped impulse procedure would be used due to its higher efficiency over the

other two methods. Structural verification of the technique used to model the

penetrator was accomplished by computing the deflection of a statically loaded

uniform rod for which a closed form solution is available. The same problem was

solved using the Penetrator Bending Analysis (modified to solve a static situa-

tion). The resulting end deflection of the rod from the two solution techniques

differed by approximately 5%. This checked the structural modeling of the pene-

trator thru the stiffness matrix.
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The penetrator constraints are simulated by linear springs. The placement

of these springs is defined by the carrier. The results of the dynamic simula-

tion are obviously very critical to ihe location of those constraints, i.e., the

support given to the penetrator by the carrier. The problem of determining the

location and magnitude of these springs to accurately describe the carrier is

very complex. It was decided that the most expedient method of determining these

supports would be a static test. Stated briefly, the test set-up consisted of

a 30 mm API projectile without the wind screen engraved into a barrel section.

The penetrator tip was statically loaded. Deflections along the penetrator were

measured for various levels of loading. In correlating the static test data with

the theoretical model, tip deflection was the primary indicator used. Repeat-

ability of the test was approximately ±5% on tip deflection. Correlation of the

theoretical model with the test results was achieved by using linear springs of,

5 x 106 b/in with the last location of spring support coming at the edge of the

carrier support. This provided an estimate of the spring constant which should

be used for modeling of the constraints.

B. Yaw and Dispersion Computation

The result of primary interest from this analysis is the penetrator mode

shape as the projectile exits from the barrel. This mode shape results in an

initial angular motion of the projectile and consequently higher dispersion.

From the known physical properties of the carrier and penetrator, stability

properties of the projectile at barrel exit, and the mode shape, the first maxi-

mum yaw and dispersion are computed as follows:

Let: C Pitch moment coefficient derivative
ma

C N normal force coefficient derivative

CD drag force coefficient
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CPN = normal force center of pressure coordinate, in.

X g axial center of gravity position coordinate, in.

D - projectile diameter., in.

I xIy axial, transverse moment of inertia, lb-in
2

W - total projectile weight, lb.

Y radial center of gravity position coordinate, in.
cg

T rifling twist, cal/rev

B = misalignment angle at projectile exit of centroidal
axis relative to barrel centerline, radians

TDISP = dispersion, mils at 1000 inches

TABAR s projectile first maximum yaw

TDISP D + D2 (1000.) (2)

where: Cma = CNa (Cp - Xcg )/D

C -c1 i-1 2

Na D/21Tf y__x
3. -- c- T 2J

[ (Ycg) TD 2

TABAR = 2 1] (B)/a (3)Ix

where

2= 1 R
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(568784) (1 ) 2
GYRO = 5

I'D5C T2

y ma

The dispersion and first maximum yaw as computed above are assumed to repre-

sent three standard deviations of what should be expected in actual firings. This

assumption is based on correlation to testing done on 30 mm API configuration3.

The values for these parameters are adjusted, based on this assumption, to repre-

sent one standard deviation.

The misalignment angle, B, is computed based on known physical properties

of the carrier and bent penetrator configuration. This will be illustrated as

follows. Consider that the moments of inertia and weights of each element of the

modeled penetrator have been computed.

Let: I xiIyiIxyi = axial inertia, transverse inertia, and product of

inertia of ith element

= radius of ith element
Rth

W, = mass of ith element

Xcgi,Ycgi = center of gravity coordinates of i element

I I yI = total axial, transverse, and product of inertia
xT'yT'IxyT relative to the barrel centerline

X cgT,YcgT = total center of gravity coordinates

N
IxT I Ixi+'Wi(Ycgi -YcgT ] (4)

gT TgT

1=1

N

IyT = I[ yi + Wi(Xcgi - Xcgr) 2 (5)
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N

IxTZ [Wi(Wcgi -XcgT)(Ycgi -YcgT)] (6)

1yl, =1

B Sin /2. (7)
IyT- xT

Typical dimensions and performance parameters are given in Table I for the

GAU-8/A weapon.

EXPERIMENTAL CORRELATION

For positive verification of the method, the distorted shape of a penetrator

at muzzle exit, as predicted by the simulation, should be compared with X-ray

photgraphs of actual firings. Even though this has not been done on the final

candidate configuration, the analytical approach has been successfully used to

design penetrators with desired stability and stringent dispersion characteristics.

X-ray photographs do exist at muzzle exit for one configuration. The bending is

readily apparent in the photographs and is within the range predicted (.25

predicted, .20 measured) for that configuration. This is illustrated in Figure 3.

GAU-8/A Parameters

Bore Diameter 1.1845 ± .002 inches

Projectile Diameter 1.1795 ± .0015 inches

Muzzle Velocity 3200 to 3500 ft/sec

Muzzle Spin Rate 11360 to 12425 rad/sec

Peak Linear Acceleration 70,000 g's

Peak Angular Acceleration 8,000,000 rad/sec2

Projectile Weight .80 to .95 pounds

Penetrator Weight .57 to .67 pounds

TABLE I
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During the design evolution, various penetrator shapes were investigated

both for penetration and dispersion. A summary of predicted versus actual

measured dispersion is shown in Figure 4. As these designs are still com-

petition sensitive between the ammunition subcontractors, they are only des-

cribed by letters. Each letter represents a different design of penetrator

or penetrator carrier interface. An exact prediction would have followed the

dotted line. As the penetrator deflections become larger, more variations be-

tween predicted and actual are apparent. This is caused by the less rigid

designs being more susceptible to variations in initial conditions.

The configurations D and.E were predicted to deflect less than .002 inches

while A is predicted to deflect about .010 inches.

Table II shows the computed effect of the following characteristics on

dispersion.

1. Penetrator Diameter

2. Penetrator Length

3. Location of Support

4. Penetrator Material (Depleted Uranium or Kennertium)

Penetrator weight is held constant during 5 of the 6 examples shown. Sall

changes in dimensions are shown to make large changes in dispersion.

CONCLUSIONS

The model developed in this paper has been shown to be a reliable engineer-

ing tool for the design of Armor Piercing Projectiles. Tradeoffs can be per-

formed analytically to select those configurations which will be structurally

rigid enough to withstand gun launches without resuling in excessive dispersion.
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SUMMARY

A summary of how the buffer load is resisted in a conventional

artillery system is given. The main geometric and dynamic properties of

British guns manufactured during the twentieth century are then listed,

and it is .shown how these properties were achieved in a recoil test rig

and in a static test rig, both pieces of apparatus being designed to

measure orifice discharge coefficient. The mean experimental results

are then presented and an indication of the corrections applied is given.

The range of Reynolds number used was 40 to 40,000, and the ratio of

length/gap of orifice was varied between 0.12 and 20.0. Comparisons

between the e results and those produced by other authors using steady

conditions were given, and the total spread of the value of discharge

coefficient was around 0.08.

Finally, some indication is given as to how a test rig, presently

being designed, will furnish further information on appropriate values

of discharge coefficient at the extreme driving pressures generated in

modern recoil systems.
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I. INTRODUCTION

The orifice in a conventional artillery system used to absorb the

energy of the recoil is normally annular in nature: one wall is moving

while the other is stationary, and the area presented to the oil flow,

together with the orifice geometry, changes during the recoil stroke.

For a simplified diagrammatic representation of the buffer operation,

see Figure 1. In addition to the above nonstandard conditions for a

fluid orifice, the flow is quasi-static in nature; the pressure generated

can be extremely high (up to 55 MPa), and cavitation is occurring. It

is not therefore surprising that design information on orifice coeffi-

cient falls short of what is required for purposes of buffer design.

In [1] experimental results were obtained for annular orifices with

one wall moving (dynamic) and for side wall orifices with stationary

walls (static). Values of the ratio orifice length/orifice gap (1/h)

varied between 0.12 and 20.0, and Reynolds numbers lay between 40 and

40,000. These controlled tests were performed on pieces of apparatus

designed to approximate to the conditions within recoil buffers on British

guns constructed in the twentieth century. See Table 1.

Values of discharge coefficient obtained were compared with those

of previous authors [2,3] for steady flows and stationary walls. Good

agreement was obtained, and mean curves have been drawn through the

experimental points and presented here in order to provide design curves

of discharge coefficient.

An attempt had been made in [1] to correlate experimental results

from the point of view of cavitation, but no success was achieved. Some

pertinent details are given, however, on a rig expressly being designed
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to measure discharge coefficients when the flow velocities (u) are 110

m/s, the driving pressures (p) are 14 MPa, and cavitation numbers (K)

are as high as 12.0. These values of p and K arc considerably in excess

of those used to date [4], although lower than those which may be

expected in future armament systems [5].

II. THEORY

The type of orifice considered, together with geometrical and other

quantities, is shown in Figure 1. When the recoil buffer force B is

exerted on the outer cylinder, a pressure p1 is generated in the

upstream area, together with a velocity U of the cylinder. This gives

rise to a theoretical value of velocity given by

U 2 (P1 - P2 ) (1)
P[A)

where p is the density of the fluid [6]. The value A/a is greater than

10 in practice, and the following corrections are also applied:

* velocity of approach phenomenon,

* extension of the rod,

* compression of the oil, and

* expansion of the cylinder.

These corrections lead to the following result for discharge

coefficient

U d(plP 2) ____

C U 0 dt P p P (2)

L a J 2 (pl-P 2 ;
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CIRCULAR OUTER CYLINDER
(MOVING AND ATTACHED TO
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ROD ATTACHED TO AREA OF ANNULUS, a

GUN CARRIAGE

UPSTREAM AREA, A

Figure 1. Diagrammatic representation of a recoil
buffer and orifice.
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The term in Eq. (2) which includes pressure variation with time is

due to the effects of elasticity, and the derivation is given more fully

in 1 ].

The effects of metal strain on orifice area and of volumetric flow

due to the influence of viscosity in the annulus were ignored.

The discharge coefficient was plotted as a function of orifice

Reynolds number. The reference length was taken to be the hydraulic

mean diameter

(4) (area-of orifice) (3)

DM (perimeter of orifice)

and with the dynamic rig, the value was approximately equal to twice the

annular gap (which was identical to the representative length used in

[3]). For the static rig, the value of DM approximated to 1.95 h.

III. EXPERIMENTAL APPARATUS AND PROCEDURE

A. Dynamic Rig

The details of velocities, values of L/h, and lengths of recoil of

British guns-used in the twentieth century are given in Table 1. This

table shows how successful the attempts to achieve these values in the

experiments were; the rig layout used is given in [1]. An outer cylinder

was driven over the piston by means of an attached piston which was

propelled by pneumatic pressure. The magnitude of the pneumatic

pressure is dictated by the required cylinder velocity and varied

between 0.40 and 1.1 MPa.

Pressure and velocity measurements were obtained from transducer

outputs, which were triggered, synchronized, and recorded on the storage
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screen of a standard, four-channel memory oscilloscope. Upon each

"firing" the synchronized trace obtained from the pressure and velocity

transducers was photographed. The stroke of the piston was obtained by

numerical integration of the velocity trace in order to check the

transducer calibration. Readings of pressure, velocity, slope of the

pressure curve, and compressed length were obtained at 40 ms intervals.

(The two latter quantities were required in order to calculate the

compressibility correction.) The corrected velocity values were then

used to give values for Cd and Re.

B. Steady State Rig

The steady flow orifice rig consisted of a square-sectioned chamber

having transparent sides, the flow passing through a narrow rectangular

slot. The gap width was varied to achieve values of I/h or 20.0, 10.0,

0.56, and 0.405. The entrance and exit pipes were 28 un in diameter,

and downstream of the entrance the flow expanded, passing through

perforated plates for flow straightening. Water from the mains was

used with this rig, and the exit was at atmospheric pressure. Figure 2

gives the general arrangement for measurement of discharge coefficient.

For low flow rates the pressure difference was recorded on a mercury-on-

water manometer, and for higher flow rates the difference of readings

on two bourdon gages was used. A stop watch was used to determine the

time taken for a given quantity of water to pass through the rig under

steady flow conditions, and, thus, the mean velocity through the working

section was derived. The kinematic viscosity of the water was deduced

from its accepted variation with temperature (measured by means of a
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mercury in-glass thermometer), and, thus, Reynolds number and Cd were

readily calculable.

IV. PRESENTATION OF RESULTS AND DISCUSSION

Orifice flow coefficient values with 1/h equal to 20, 10, and 0.3

(average) are shown in Figures 3, 4, and 5 for orifice Reynolds numbers

ranging from 40 to 40,000. In addition to the experimental curves

obtained from the dynamic and steady flow rigs, concerted results from

Lichtarowicz et al. for Z/h = 0.5 and 10.0 are shown [2], together with

the results on an annular orifice by Bell and Bergelin [3]. The Reynolds

numbers used in [2] were based on conditions within a circular orifice

concentric with a circular pipe, whereas in the case of Bell and Bergelin

and the experimental results obtained here from both the dynamic and

steady state rigs, the hydraulic mean diameter was used.

For well over half of the reqults, it was expected that transition

flow would exist, in a regime where both viscous and inertia phenomena

are important; but for Reynolds numbers of greater than 4000, the

predominant effects were expected to be kinetic energy losses associated

with flow contraction, limited expansion, and turbulent friction, No

measurements were taken during these tests for entirely viscous flow,

the limit for Reynolds number being 40 for these conditions [3].

It was not possible to plot results for a symmetric circular orifice

for 1/h - 20.0 since there were no data available [2]. However, the

values obtained here were within 0.08 of those for an annular orifice

[2]. The values taken at 1/h - 10.0 :how an unexpected :catter of1 roughly 0.08 in Cd, but there is reasonable agreement between the
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Figure 3. Design values discharge coefficient
(.18 < 2./h < .56).
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experimental results obtained on both dynamic rigs and with [2] and [3].

The results tend to be nearer those obtained in [3] than to those from

[2] for Reynolds numbers of up to 10,000, a possible explanation being

the greater similarity of orifice configuration.

Values of I/h = 0.56 and 0.405 were used for the steady state rig.

For the dynamic rig, the value chosen was 0.3 and lay roughly between

the values used in [3] and [4]. The results do not show nearly as much
A

scatter as those for A/h = 10.0, and those obtained on the steady state

rig agree tolerably with those obtained from the dynamic rig. The

remarkable fact is the better agreement, over a wide Reynolds number

range, of the experimental results with those produced in [2] than with

those of [3]. The constancy in the values of Cd should also be noted.

The discharge coefficient for an orifice with a moving wall is

found to vary less as the value A/h diminishes, and it is tempting to

suppose that when I/h - 0, the least variation is expected. This is,

unfortunately, of little help in the design of armament recoil systems

sizce the average value of Y/h for artillery pieces appears to be

approximately 15.0. The curves constructed, drawn through the experi-

mental results should provide design values which are better than those

used to date.

With regard to pressure traces measured downstream of the piston in

the dynamic rig, the situation was not satisfactory. Confusing results

were obtained, due possibly to the jet produced by the annular gap and

to reflections of pressure and rarefaction waves from the cylinder

extreme end. The small pressure pulses shown in the traces did not

respond to mathematical treatment, and it was concluded that these could
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be ignored compared with upstream values, as they were always less than

about 0.07 MPa. On the above grounds, it was decided that no useful

purpose could be served at this stage by presentation of these results.

It is considered that such effects can be measured using instrumentation

now available, but it should be realized that any set of results must be

regarded as applicable to the geometry of that particular recoil buffer

only.

V. FUTURE INVESTIGATIONS

From recent calculations [5] it has been shown that under overload

conditions of certain types of armament, it is possible to achieve the

required buffing force only by using cylinder pressures in the order

of 55 MPa. Thus, oil velocities in the jet are in the order of 250 m/s.

The geometry of the orifice can also be unusual, inasmuch as radially

inward flow into the center of a hollow tube is sometimes used, and

there will be extensive cavitation and jet impingement. Under these

conditions it is not known what values of discharge coefficient should

be assumed. Such information is essential for calculation of the

dynamics of the recoiling parts, and, thus, the design of a test rig to

measure this quantity at extreme pressures is now underway at Iowa State

University. It is to be a steady state rig, and values of pressure of

only one quarter of those encountered instantaneously in the system

described above Are contemplated (i.e., pressures up to 14 MPa), but

further informationi will be available from a suitable dynamic test to be

used in conjunction with the rig. It is expected that the range of

knowledge will be increased significantly by this research.
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VI. CONCLUDING REMARKS

1. Flow measurements taken on rigs where fluid passes through a narrow

gap adjacent to one wall, where Reynolds numbers have been between

40 and 40,000, and the orifice length to wall gap ratios between

0.3 and 20.0 have been considered. In one rig the gas was annular

and the outside wall moving, and in the other the gap consisted of a

long rectangle where all walls were stationary. The quasi-steady

values for orifice discharge coefficient with a moving wall were

not markedly different from those obtained with a stationary wall,

although they do tend to be slightly higher. The values are also

close to results obtained by previous workers using stationary

concentric central or peripheral orifices. Design curves fdr

discharge coefficient have been drawn through the experimental points

using the correct orifice configuration, and these should provide

better data than those presently available.

2. In the case of the moving wall configuration, corrections were made

for compressibility of the fluid and elasticity of the cylinder/

piston arrangement. The viscous effect of the moving wall and the

effect of loads upon orifice deformation were ignored.

3. The variation of Cd with Reynolds number diminishes as the value of

1/h decreases. Although it would be preferable to have a constant

Cd for the design of recoil systems, it is not possible to have

values of 2/h less than approximately 10 and, thus, the above fact

is of little practical value in this case.

4. A newly designed experimental rig should provide further inforinatiz'en

on discharge coefficient at values of pressure and jet velocity
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outside those values at which tests'have, up to the present, been

used. These pressures and velocities will go some way to meeting

values experienced in presently designed systems.

5. Al.though it seems possible that the results of shock waves can be

measured, their influence would be difficult to assess, and it seems

likely that the phenomena actually observed would only apply to the

actual configuration tested.
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MAIN DETAILS OF BRITISH RECOIL SYSTEMS

MAX
MUZZLE DATE OF RECOIL RECOIL

TYPE VELOCITY MANUFA- ORIFICE SHAPE LENGTH VELOCITY
OF GUN m/s CTURE ENTRY z/h A/a (m) m/s

3.7 IN HOW 296 1920 300 RAMP 4-4 8.85 1-07 10-1

5.5 IN FIELD
GUN 90 1941 30 RAMP 8-3 5.2 1.37 10.6

25 POUNDER
FIELD GUN 530 1938 450 RAMP 2-5 4.83 0-92 10.4

12 POUNDER 900 CORNER
COASTAL 680 1910 -05 IN RAD 1.65 19-5 - 0.21 0.68

105 mm SP 900 CORNER
(ABBOT) 720 1965 01 IN RAD 40-0 9.9 0.31 14-2

4.5 IN ACK 450 RAMP
ACK 730 1940 0.15 IN RAD 1-25 10.0 0.42 0-71

77 mm TANK 450 RAMP I
GUN 840 1944 0.15 IN LONG 24-6 12.4 0"22 10-1

17 POUNDER 900 CORNER
S.P. GUN 880 1944 0.05 IN RAD 17.7 14.9 0-36 9.1

6 POUNDER 900 CORNER
ANTI TANK 890 1941 0.05 IN RAD 39-6 15.3 0.76 8.6

32 POUNDER
ANTI TANK 1070 1945 900 CORNER 21.7 4-3 0.36 8.4

RECOIL RIG 900 CORNER 10.3 13.3 0.58 3.0
20"1

STEADY FLOW 0 0.3 36.4
APPARATUS 0.405 18.2

0.56
10.0
20.0

Table 1.
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I. INTRODUCTION

A. BACKGROUND

An increasing number of Army gun type weapon systems, includ-

ing helicopter gun turrets, artillery, air defense guns and combat

vehicles, require high performance gun pointing, tracking and stabil-

ization systems to effectively perform their mission. Consequently,

it has become increasingly important for the Army to develop a capa-

bility to specify, design and evaluate control and stabilization systems

for turreted weapons.

To help meet this need, a procedure for the design of control and

stabilization systems has been jointly developed by personnel of the

Rodman Laboratory and the Department of Information Engineering at the

University of Iowa. This procedure utilizes results of modern control

theory, augmented by extensive digital computer simulations to derive

and specify a practical controller for both regulating and tracking

systems. The optimal desinn procedure and the numerical techniques

required to obtain a solution were derived and utilized initially in

an investiqation cf methods' 2'3 to improve the pointing accuracy

of helicopter gun turrets, however, it is applicable to any turreted

weapon system. It is presently being applied to desiqn of a turret

drive system for the Low Dispersion Automatic Cannon System (LODACS)

test bed vehicle. The LODACS test bed vehicle consists of a Sheridan

vehicle in which the main weapon has been replaced by a RARDEN 3Omm

automatic cannon.
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The LODACS vehicle will have a stabilized sighting system and a

sophisticated fire control system including a digital fire control

computer, a miss-distance sensor (MDS) and a Closed-Loop Fire Control

system. The purpose of the task reported in this paper is to provide

the LODACS test bed vehicle with a precision gun pointing system which

will respond to position commands received from the sight and fire

control systems and maintain the desired aim-point for both stationary

and fire-on-the-move conditions.

B. TURRET CONTROLLER DEVELOPhIENT

The development of the turret control system can be divided

into three stages or tasks:

1. Specification of components for the turret power drive subsystem

(i.e., motors, actuators, gearboxes$ power supplies, etc.). These

components must meet the torque, speed and power requirements estab-

lished by the performance requirement and the operating environment of

the particular weapon system.

2. Derivation of-a control law to achieve the desired performance

with the components specified in Task 1.

3. Specification and integration of the electronics and sensors

needed to implenent the control law with the power drive subsystem.

The details of each of these three stages as applied to the develop-

ment of the LODACS turret and the progress to date, are discussed below.

II. SYSTEM SPECIFICATION

The first step in the design of a turret control system is to dater-

mine the performance requirement of the system and the disturbance
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environment in which the system must operate.

This information is then used to soIecify the turret power drive

components which will respond to controller commands and maintain the

aim line in spite of applied disturbances.

Once the power drive subsystem is determined, the ultimate perform-

ance capability of the system is also largely determined. No control

law can be derived which will correct for major errors made in this

stage of the design. In theory it is possible to choose the poles and

zeroes of a controllable linear system at will and thus achieve any

desired level of performance. In practice, howeveri non-linearities,

and power and torque limitations always restrict the range over which

system characteristics can be modified by feedback control.

In spite of the importance of this stage of the design, it is often

difficult or impossible to determine the exact performance requirements

or the disturbance environment. Often the parameters of the gun, turret

and mount are not completely determined when long lead items for the

control system are specified. No general method for determining these

requirements is available, but the way in which the LODACS system was

specified is discussed and miaht at least serve as a guide for combat

vehicle turrets

P ERFORIANCE REQUI REIENITS

F Specific performance requirements for the LODACS were derived from

the accuracy of the gun and the fire control system and from knowledge

of the requirements on other combat vehicles. The LODACS turret control

system will slave the gun to a separately stabilized sight. Aimpoint
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offsets of the gun line from the gunnier's line of sight'are computed

by the fire control computer and must be maintained by the turret

control system.

The principle sources of delivery error for the LODACS weapon

system are the gun/ammo dispersion, the fire control system compu-

tational error and the gun pointinq error. The gun/ammo dispersion

and the expected fire control error are random errors of known magni-

tude. The accuracy requirement for the weapon pointing and stabil-

ization system was chosen so that the total system error would not

be seriously degraded.

DISTURBANCE ENVIRONMENT

A complete specification of a turret control system must also

include the turret tracking requirement and the disturbance environ-

ment. Information on the evasive motion of typical targets or on the

evasive maneuvers of an attacking vehicle are not yet available to the

,designer. Proving ground test of moving fire capability often involve

firing at targets with a fixed crossing velocity on firing at fixed

targets from a zig-zag course. Because of the long engagement ranges,

a maximum tracking rate of 100 mr/sec (corresponding to a crossing

velocity of 60 mph at 250 meters) was considered adequate. A higher

rate for slewing (,90°/sec) is required but precision tracking is not

required at these rates. For design purposes the target was modeled

as moving with step-like changes in velocity with fixed velocity between

these changes.
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The disturbances encountered by a turret control system are a

function of the vehicle speed and the terrain roughness as well as

the gun and turret mass properties and the properties of the turret

drive elements themselves. The torque relationship between these

quantities can be expressed as an equation of the form:

IIlTsmxrxa L + N2 ( a
11 21
T xa (J m + J a) x a H +

[N(Jm + J ) + JL] x ac

m L

where m is the mass of the load (the turret or the gun, r is the

distance between the load center of gravity and its center of rota-

tion, aL is the component of turret linear acceleration perpendicular

to both r and the center of rotation, N is the gear ratio of the tur-

ret drive system, Jm is the inertia of the motor rotor, J a is the

equivalent inertia of the gears, aH is the component of hull angular

acceleration about the load center of rotation, JL is the rioment of

inertia of the load and ac is the angular acceleration commanded by

the gunner and fire control system. For loads driven by a hydraulic

piston, the second term is replaced by a term dependent on the length

of the torque arm, the mass of the piston and the effective mass of

the torque arm, however, this term is negligible compared to the other

components.

The specification of the turret power drive components for the

LODACS drive system was based on the statistical properties of the

torque obtained from Eq. II-l. The torque capability was specified

as the value that would meet the torque requirement 95% of the time

(assuming cuassion probability distributions), that is, the toique

capability required was twice the rms value of the torque obtained
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from the torque relation, evaluated for a typical hull input.

The gun and turret inertias and unbalances were estimated based

on known gun and turret properties. The gear ratios and motor rotor

and gear inertias vary widely depending on the type of turret drive

system selected.

The statistical properties of the system required to evaluate

II-1 (except a ) were obtained from IIITPRO5 computer simulation ofC

the vehicle moving over the Aberdeen Provinq Ground Bump Course at

I5mph. It should be noted that a high degree of correlation between

aL and all was predicted by the simulation so that the torque was the

simple sum of the components rather than the root sum square as for

uncorrelated components.

A further requirement on the turret drive components is that they

deliver the specified torque at the 2a value of the gun angular rate

relative to the hull. The rms annular velocity of the hull was also

estimated from the HITPRO simulation (.25 radians/sec in elevation

and .1 radian/sec in azimuth). This velocity requirement is added

because the torque output capability of some types of drive system

decreases rapidly as the velocity increases. The power requirement

was obtained from the torque requirement and the r.m.s. relative ve-

locity of the weapon and the hull obtained from the simulation.

The parameters and statistical averages for the LODACS vehicle

are tabulated in Table II-1.
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BANDWIDTH REQUIREMENTS

The suspension system of a combat vehicle acts as a low pass

filter that attenuates the high frequency inputs from the terrain.

Further damping of the high frequency disturbance components is ac-

complished by the inertia, J, of the gun and turret themselves which

add an attenuation factor, A(f) of the form
1

11-2 A(f)

to the magnitude of the motion resulting from a disturbance at a

frequency f. The turret control system must damp out the low fre-

quency components. The bandwidth requirement for the turret control

system was determined by estimating the frequency above which the

disturbance torque weighted by A (f) becomes negligible. The fre-

quency spectrum was calculated from tompter simulation of the

linear acceleration (the principle disturbance) and the bandwidth

requirements were estimated to be from 0-5hz for the traverse drive

and 0-10hz for the elevation drive.

In order to assure that these bandwidths would be achievable in

the system, the resonances of the drive system components, i.e.,

gearbox and hydraulic resonances, were required to be outside this

region.

POWER DRIVE SUBSYSTEM

Based on the above requirements on the turret power drive sub-

system, a hydraulic system was chosen for the LODACS turret. This

hydraulic system employs a bent axis hydraulic motor and gearbox in

traverse and a hydraulic piston in elevation.
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A hydraulic power supply consisting of an electrically driven hydrau-

lic pump and an accumulator provides the hydraulic system with a 2000

psi operating pressure. This system actually exceed torque and power

requirements but larger hydraulic actuators are required to increase

the hydraulic stiffness to meet system bandwidth requirements.- The

linearized block diagrams of these systems are shown in Figures II-i

and 11-2. The differential equations representing this system can

be written as

11-3 k = Ax + Bu + Fw

x(O) = x0

where x is a vector representing the states of the system, w is the

external disturbance applied to the system, and u is a control function

whose derivation is discussed in the following section. A, B and F

are matricies whose elements are a function of the parameters of the

turret. A,B, and F for the elevation and azimuth LODACS system are

given in Tables 11-1 and 11-2.
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TABLE H1-la

STATISTICAL PROPERTIES OF HULL M1OTION USED TO ESTIMATE LODACS TORQUE

AND POWER' REQUIREMENTS

ELEVATION

aL = l2ft/sec2 (rms)

aA 2 rad/sec2 (rms)

a 1/2 rad/sec2.
C

w n .125 rad/sec (rms)

AZIMUTH

aL = lOft/sec2 (rms)

a A I/..2 rad/sec2 (rms)

ac = 1/2 rad/sec2

wil= .1 rad/sec

UILESS OTHERWISE NOTED ALL QUANTITIES WERE ESTI%1ATED FROM A HITPRO
SIM1ULATION OF A SHERIDAN VEHICLE AT 15 IPH ON TE APG BU'IP COURSE.

*Estimated fire control computer command requirement

*Based on required tracking rate, not hull motion
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TABLE II-lb

LODACS TURRET PHYSICAL PROPERTIES

ELEVATION

Nlxr - 250 #-ft/g

i 160 slug-ft2

AZIMUTH

MxO 4000 #-ft/g

2

~~L 40 4000 lug-f
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TABLE- iI-2

ELEVATION S YS TE M

REGULATOR

O 1 0 0 00

0 -2.62 .0117 0 0 0

A 0 -2,09x105  0 2.3x106  0 0

'10 0 0 0 4.0 0.

O 0 0 0 0 1

LO 0 0 -4.11xl10 6 -9.8x10 4  -500'

BT. [o 4B0 0 0 0 4.9x10 j

H TFT. [o.o -2,625 -2.0971xl05 0 0 0]

TRACKER

por

Ar 0 0]

DISTURBANCE ACCOMMODATION

wu z

A z [ 0 3 9 .4]
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TABLE 11-3

AZIMUTH SYSTEM

REGULATOR

0 1 0 0 0 0 0 0
0 .182 0 0• 0 0 0 921
0 0 -1.17 2.59x106  0 0 -806. 0

0 0 0 0 4 0 0 0
0 0 0 0 0 1 0 0
0 0 0 -3.05x10 6  -9.79x10 4 -500 0 0
0 0 6.2 0 0 0 0 -57601

0 -1.0 0 0 0 0 .0016 0

B T, [ 0 0 0 0 48985 0

HTFTLw ,o182 0 0 0 0 0 01]

TRACKER

p=r

DISTURBANCE

wuz

Az [ 10 39.4]
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III. DERIVATION OF THE CONTROL LAW

A. THEORETICAL CONSIDERATIONS

The general optimal control problem is to-determine a control

function, u, such that an asymptotically increasing cost function, J,

is minimized for any initial condition on the state vector, X . The

cost function, J, is the time integral of some positive definite func-

tion of time, the states of the system and the control function. For

most cost functions, the solution for the optimal control is a very

difficult, if not intractable problem. There is one particular type

of cost function, the quadratic cost function, for which the form of

the solution is well known and numerical techniques for the solution

are widely available. The application of these techniques to the

derivation of a controller for a helicopter gun turret has been re-

ported elsewhere.
1'2,3

The results obtained in these studies showed that a practical

quadratic optimal controller could be derived which performed better

than the existing classical controller, required relatively little

engineering effort to design, and could be easily implemented. This

design technique was chosen for application to the LODACS turret con-

troller. A brief review and discussion of the theory is included here.

LINEAR OPTIMAL REGULATOR WITH A QUADRATIC COST FUNCTION

A linear system may be described by a set of linear differ-

ential equations of the form

III-! k = Ax + Bu y : Hx

x(o) x 5
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where x is a vector of the states of the system, u is the control

function and A and B are matrices whose elements are determined by

the parameters of the system. y is the vector of observed states of

the system. I

The quadratic cost function, which will be minimized by the choice

of u, is of the form

111-2 J = /f (xtHTQHx + uT Ru)dt + xt (tf) R2 x(tf)

where Q and R2 are positive semidefinite weighting matricies and R

is a positive definite weighting matrix. tf is the final time of

interest for the problem.

The control function, u, which will drive the initial state,

xo, to the zero state with a minimum value for J is known to be of

this form:

111-3 u = R-1 BT KxUop t  K

where the K matrix is the solution of matrix Ricatti equation

111-4 KAT T -I T-K = A K + KA + H QH- KB R" B K

K(tf) R

The solution of this non-linear matrix differential equation can

be obtained by numerical methods. The resulting optimal control func-

tion can be implemented by weighting the measured states of the system

by time varying gains. Often these time varying gains quickly reach

a steady state value.

In many cases, including the turret controller, the steady state solu-

tion is desired. The feedback gains then become fixed which permits
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them to be easily implemented by analog circuits.

The steady state value of the K matrix can be found by solution

of the algebraic equation

11K-5 0 = AT K+ KA+ HT QH- KBR -1 BTK

This latter technique is computationally more efficient, which

becomes imporcant when the design is iterated many times. Note that

all states are assumed to be measured and available for forming the

feedback control function.

THE TRACKING PROBLEM

The optimal regulator generates a control function which drives

the state vector to zero from some initial condition or maintains

some set vector in the presence of external disturbances. In many

cases, including the turret controller, it is actually desired that

one or more states of the system track some input command such as

the gunner's tracking command. The tracking problem can easily be

put in the form of the regulator problem provided that the tracking

commands can be approximated by the output of a stable linear system

decaying from some arbitrary initial condition. A wide range of track-

ing signal including steps, ramps, sinusoids and decaying exponentials

can be represented in this way.

The tracking command, p, can be represented as the output of the

linear system

111-6
p D rr

A Ar
r

r(o) = ro0
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Now the original regulator states represented by Eq. III-l can be

augmented by the states represented by Eq. 111-6 to from a new regu-

lator system with states x matrices A, Band D replaced b A, B and

where

III-7a O

A A ]

III-7b

III-7c
( D Dr]

and x : [X]

By proper choice of the cost function the control system can be

forced to follow the tracking command. For example, if it is desired

that xI follows pI, the cost function can contain a term of the form

(x - 2. If this term is heavily weighted in the cost function,

then x1 is forced to follow p1 and the desired performance is obtained.

The form of the solution for the control function for the optimal

tracker is exactly the same as for the regulator.

For the LODACS turret system, the tracking command is modeled as

a series of step and ramp function of unknown height and slope. The

tracking function can be represented by a second order linear system

of the form:

with p= r., Lr r2
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DISTURBANCE ACCOMMODATION

Any external disturbances which are applied to the optimal

regulators and trackers described above, cause the state of the system

to deviate from the desired state. The resulting error is sensed and

the state feedback control function is applied to the plant to balance

the disturbance. Thus some error must result before a corrective

action is taken. In the presence of large external disturbances, it

is difficult to implement the control function required for precision

tracking. This problem is also encountered in classical design con-

trollers and is handled by the use of feedforward signals.

The original LODACS optimal tracker designs were found (by com-

puter simulation) to be overly sensitive to hull motion inputs. It

did not appear that the feedback gains could be increased to provide

satisfactory performance. This was not completely unexpected since

other optimal tracker designs had demonstrated this sensitivity and

ail existing high performance turret stabilization systems have hull

motion feed forward loops.

The optimal design procedure can accommodate the design of feed-

forward loops for disturbance accommodation in much the same way as

the tracking signals are accommodated, that is, the tracker states

are augmented by the states of a stable linear system which generates

an approximation of the disturbance input as it decays from some ini-

tial condition. The disturbance is modeled as a vector, w, which

is the output of a system described by:
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w H
z

z = Azz

z(o) = z

the augmented regulator including both the tracking states and the

disturbance states has the same form as the original regulator prob-

lem except the matrices A, B and D are replaced by A, B and D re-

spectively, where,

III-9a A FH o

oAz o

o o Ar

III-9b

III-9c
D: [D,D H].r

The form of the cost function and the solution for the optimal

control function is the same as for the optimal regulator, however,

for the tracker and the tracker with disturbance accommodation, con-

siderable computational simplification and a pleasing result can be

realized if the K matrix is divided into components

Kxx Kxz Kxr

K = Kzx Kzz Kzr

Krx Krz Krr
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3
then the optimal control function can be written as

u -R-I BT Kxx X
opt

-l T
-R B Kxr r

-R-I BT Kxz Hz

The resulting control system is represented by the block diagram

of Figure 10, 111-1.

The optimal tracker block diagram is very similar to the block

diagram of a classical turret stabilization system. The chief dif-

ferences are the number of variables sensed and the absence of com-

pensation networks in the feedback paths.

The LODACS test bed vehicle suspension system resonates at a fre-

quency of about lhz, therefore, the hull disturbance was modeled as

a sinusoid at that frequency. This disturbance can be generated by

a linear differential equation of the form:

III-10
W=Z

= o2] [z]

This has not yet been finalized as the design disturbance.

INACCESSIBLE STATES

The optimal control functions generated by the method discussed

above assumes that every state of the plant, the tracker and the dis-

turbance is weighted and summed to form the control function u. In

practice it is costly and often very difficult to provide sensors for

the measurement of all of the states of the system. A practical alter-

native is to generate estimates of the inaccessible states of the system
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from information about the known states and the control function.

The estimated states are then weighted and included in the control

function as if they had been measured directly. A systematic method

for estimating the unknown states is to employ a Luenberger observer.

A Kalman filter accompiishes.the same function in noisy systems.

Other estimation techniques could also be employed.

B. DESIGN PROCEDURE

MODEL DEVELOPMENT

Before the optimal feedback gains can be set, a linearized

model of the turret drive system must be derived. The states selected

to describe the system are not unique and some care in their selection

can greatly simplify the implementation of the control law. In the

model of the LODACS turret drive system derived in Section II. a con-

siderable effort was made to ensure that the states of the model cor-

respond to the output.s of the sensor that would be available in the

actual system. One unusual result of this procedure is that one of

the states of the model, xl, is the position error or the difference

between the actual gun line and the gun line directed by the gunner's

sight and the fire control computer. This corresponds to the signal

available from the resolver chain which links these devices. The se-

lection of system states which correspond to measured quantities per-

mits system sensitivity to noise and gain variation to be estimated

readily.

SELECTION OF COST FUNCTIOI

The art of designing a turret control system by this optfinal

design procedure is to select a cost function which generates a control
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function that meets the system performance requirement without requir-

ing the system states to exceed their physical limitations. The rela-

tionship between the cost function, the performance requirement and the

system non-linearities is not known a priori, and must be determined

by an iterative procedure. The iterative procedure consists of select-

ing a cost function, generating the control function corresponding

to that cost function, evaluating the performance of the turret drive

system with this control function by computer simulation, and modi-

fying the control law (adjusting the elements of the weighting matrices

Q and R) to improve the performance as required. If the system does

not perform well enough, additional weight can be given to the error

terms in the cost function. If the value of some state exceeds that

achievable by the physical system, that state can be weighted in the

cost function. A new control function is generated based on the modi-

fied control law and the performance of the new drive system is eval-

uated by computer simulation. This procedure is repeated until either

a satisfactory result is obtained or the designer is satisfied that

the capability of the turret drives has been achieved.

The selection of the initial cost function on the starting point

for the iterative procedure is little more than an educated guess.

The control function, u, must be weighted, and it is apparent that

a term related to the squared error of the system should be included.

The inclusion of other terms to limit the values to be attained by

other states of the system depends on the judgement and experience

of the designer. The relative weighting to be assigned to these terms
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and the sensitivity of the system performance to changes in the weight-

ing must be determined by trial and error.

Before the LODACS turret control design is finalized it will be

incorporated in a full scale simulation where realistic external dis-

turbances and tracking signals are applied and subsystem interactions

can be evaluated. The HITPRO simulation is presently being modified

for this purpose. Some final iterations on the design will probably

be required before the control electronics are specified.
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IV. SPECIFICATION OF CONTROL ELECTRONICS

The implementation of a control law based on the dezign procedure

in Section III could conceivably be realized with either analog or

digital electronics. At the present time, an analog system is easier

and less risky to implement than the digital system. As the speed

of microprocessors increases and the cost of A-D and D-A converters

is reduced, digital processors will become more attractive. Ulti-

mately a single digital processor for both fire control and turret

control will very likely be possible.

The analog electronic controller would consist of fixed gain ampli-

fiers, integrators, sensors and signal conditioning electronics as-

represented by the block diagram of Fig. IV-l. The regulator feedback

signal, the tracker feedforward signal and the disturbance accommodation

feedforward signal can al be implcmented by fixed gain amplifiers.

The implementation of the Luenberger observer requires only amplifiers

and integrators, the number of integrators being equal to the number

of states to be estimated. Signal conditioning in the form of demod-

ulation, filtering, impedance matching, etc., is highly variable from

system to system because it is dependent on the types of sensors used.

Some adjustments of amplifier gains will undoubtedly be required as

the system is integrated and final parameter values become known.

The optimal controller derived by the procedure described in Section

III requires no compensation networks in the feedback or feedforward

signals, and the electronics required for systems of the same order

is the same except for the gains of the amplifiers.
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Turret drive system, whether driven electrically or hydraulically

are often modelled as systems of about the same order (6-10 states

per axis). Therefore, it appears to be feasible to design a single

turret controller that could be adapted to a variety of prototype

turret drive systems by either a modular design where the number of

amplifiers and integrators can be varied, or overdesigning the system

to include extra amplifiers and integrators. The chief barrier to

such an approach is that signal conditioning requirements vary widely

between systems.

The feasibility of implementing the turret control for the LODACS

turret with sufficient flexibility that it can be used for other ap-

plications is being investigated.
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V. SUMMARY AND CONCLUSIONS

A. PROGRESS AND WORK REMAINING

Our program is to implement an optimal controller for a pre-

cision turret controller. Specifications for system performance were

derived and estimates of the disturbance environment were made. Based

on this analysis, a hydraulic turret drive system is being procurred.

The hydraulic turret drive system was modeled and control laws have

been derived. The HITPRO simulation is being modified for use in

evaluation these ccntrol laws. Luenberger observers for both the

traverse and elevating system are being derived.

After the design is completed, the electronics for the controller

can be specified and procured and system integration will begin.

i
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I. INTRODUCTION

The purpose of this paper is to outline a method of approach for a

deterministic study of the pointing accuracy of modern anti-armor automatic

cannons. Emphasis is given to the evaluation of various factors and their

influence upon the gun barrel response to a single projectile firing, as well

as to repeated firings.

The accuracy of an anti-armor automatic cannon depends strongly upon

the position, the velocity, and the slope of the cannon barrel at the muzzle,

as the projectile is ejected. Since upon firing the passage of the projectile

through the barrel induces transverse, torsional and recoil motions of the

cannon, a precise knowledge of the time dependency of subsequent transverse,

torsional and recoil motions of the gun tube is required to predict gun point-

ing accuracy.

In modern artillery, the cannon consists in part of a slender thick-

wall tube with a constant inner diameter and a variable outer diameter. The

breech end of the tube is heavily constrained against lateral motion, the

supporting yoke serving to constrain lateral bending and lateral displace-

ment of the tube in the yoke. However, the tube may recoil axially rather

freely through the yoke. Often, one or more additional lateral supports are

placed between the breech yoke and the cannon muzzle, and viscous dashpots

may be employed to dampen the lateral motion of the tube. These additional

lateral supports restrict lateral displacement of the tube, but allow rela-

tively free bending rotation of the tube at the supports. Another factor that

affects the tube motion is the presence of a concentrated (tuning) mass usually

located near the muzzle end of the cannon, the purpose of this mass being to

serve as a fine tuning (adjustment) device to correct gun pointing errors.
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The optimum location of the tuning mass for purposes of reducing the lateral

displacement and velocity of the cannon muzzle is of particular importance.

Because of the weight and the slenderness of the tube, the cannon

barrel droops in a vertical plane when at rest in a firing position. How-

ever, when a projectile is fired down the barrel, pressures produced by the

expanding gas in the barrel and forces exerted by the projectile on the barrel

as it passes through the barrel induce a lateral motion of the tube.

Furthermore, as the projectile travels down the tube, rifling in the inner

barrel produces an axial spin of the projectile. In turn, the tube is

subjected to a torsional moment which produces torsional motion of the tube.

Observation of the actual response of a cannon muzzle after firing

shows that the muzzle moves around in some sort of Lissajous figure. This

result has led some investigators to conclude that there is a coupling between

the torsional motion and the lateral motion of the barrel. However, the

present authors have studied the probiem of coupling by the theory of linear

elasticity and have found no coupling between torsional and bending modes.

In particular, according to linear elasticity theory, a cantilever tube that

is vibrating freely in a bending plane will not deviate from that plane if it

is given a prescribed torsional oscillation at the root. However, there may

be secondary (nonlinear) effects that cause some coupling between torsional

and bending vibrations. Then the lateral centrifugal force of the projectile,

the Bourdon pressure effect, or other effects may couple bending vibrations

and torsional vibrations.

In the absence of nonlinear effects, the fact that the muzzle moves

around in some sort of Lissajous pattern may be explained by noting that the
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lateral motion, in general, consists of a combination of a vertical motion

(in the direction of gravity) and a horizontal motion. Since the vertical and

horizontal motions are superimposed, the muzzle roves about in a Lissajous

figure.

It is easy to see why one might think that the torsional and bending

modes are coupled. For example, consider a cantilever beam of circular cross

section that droops in a neutral plane. If the droop of the cantilever beam

is due to permanent crookedness, a torsional rotation of the beam will cause

the beam to be displaced out of the vertical plane. However, if the droop is

due to weight alone, it may be shown that the torsional rotation does not

displace the beam from the vertical plane. Accordingly, for small torsional

and lateral motions of a gun barrel, the torsional motion of an initially

straight gun tube may be studied separately from the bending motion. In

other words, the weight of the barrel does not affect the torsional motion.

As noted in part above, the accuracy of an artillery piece under re-

peated firing depends strongly upon the location of lateral supports, upon

the location and the size of the tuning mass, upon the restraint of the

breech support during recoil and return to firing position, upon aerodynamic

and structural damping, upon the Bourdon pressure effect, upon gas pressures

behind the projectile, etc. Consequently, a study of the gun pointing

accuracy of an anti-armor cannon must include a study of the transient motion

of a varible thickness cannon tube subjected to transient forcing functions

and constrained laterally by supports, whose axial positions depend on time.

As noted in [1], by 1950, the problem of the motion of beams had been

a subject of discussion for over a century. By 1976, we note that the litera-
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ture on the dynamics of beams has increased several fold. However, an exten-

sive study of the technical literature has not revealed any treatment of

lateral supports with time dependent axial positions [2,3,4]. We refer to

this type of problem as that of lateral-torsional transient motions of

variable thickness tubes subjected to lateral constraints with time-dependent

axial positions, or briefly as transient motion of tubes subjected to axially-

sliding lateral constraints. In the following articles, we further define

the problem and propose a method of attack, which is believed will yield a

solution that includes the significant effects of various factors.

ii. A STATEMENT OF THE PROBLEM AND A METHOD OF APPROACH

The problem of gun pointing accuracy is essentially one of transient

motion of thick-wall slender tapered tubes, with axially sliding lateral

supports and attached tuning mass, subjected to axial and lateral driving

forces. To achieve a solution to this extremely difficult problem of

mechanics, one might use a modal analysis approach [5]. Then one requires

the natural modes of vibration of the system, preferably in an analytical

form. However, in the present complex problem, the determination of analyt-

i al eKpressions for mode forms is not very feasible. Another difficulty lies

in the fact that the treatment of forced motion problems in a series of

natural modes is useful only if the series converges rapidly. In the

present problem, the finite-element treatment of the initial value problem

appears more promising than expansions in natural modes. In particular, the

finite-element method readily admits representation of air damping, structural

damping, and special damping devices by a row of dashpots along the length of

the barrel. In addition, natural frequencies may be readily obtained for the
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complex barrel-support system and plots of natural modes may be generated as

a simple extension of the program.

III. ANALYSIS OF THE PROBLEM

A high performance cannon which is currently being developed at Rodman

Laboratory is classified as having an intermediate firing rate, a high recoil

energy, and perhaps most importantly, a very long tapered slender thick-wall

barrel, approximately 60 mm in bore diameter and 220 inches in length.

During each firing of a round, the passage of the projectile through the

barrel induces torsional and lateral motions of the barrel, as well as an

axial motion (recoil and recovery) of the barrel. A successful design of

this anti-armor automatic cannon (AAAC) system depends heavily upon the gun

pointing accuracy. Hence, the prediction of transient transverse, torsional

and recoil motions of the gun tube is very important to the gun pointing

error analysis. An analysis of a constant thickness gun tube under a single

shot firing condition, in which the NASTRAN computer program was utilized,

has been reported [6, 7]. However, there seemingly have been no studies that

incorporate all significant effects, such as tapered barrel, accurate

representation of supports, etc. Accordingly, a deterministic model which

determines the motion of a gun barrel should take into account ballistic

phenomena such as weight of the projectile, centrifugal force of the projec-

tile in a curved barrel, the Bourdon effect, inertial effects accompanying

recoil, and reaction of rifling. In addition, axial friction of the pro-

jectile must be included, and radial expansions and contractions of the gun

barrel (breathing Motion) should be considered. Totsional response is
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decoupled from bending response except for second-order effects. The overall

motion may be divided into two phases: (1) The motion of the barrel while

the projectile is in it, letting the initial motion of the barrel be

arbitrary. (2) The subsequent motion of the barrel after the projectile

leaves.

Since the projectile attains supersonic speed before it leaves the

muzzle, there is a shock wave ahead of it. This shock wave is the classical

one-dimensional shock wave due to a high-speed motion of a piston. However,

the shock wave appears to have negligible effect on the deformation of the

barrel. Its main effect is to retard the projectile. There are pressure

waves in the gas behind the projectile as well. Consequently, the assumption

that the pressure in the gas is uniform at any instant may be questionable.

If there is enough damping in the system to stop the motion of the

barrel before the next shot is fired, periodicity of the motion is irrelevant.

Then, the problem is reducible to a pure initial-value problem. More

generally, however, the motion of the barrel, after firing, may exhibit an

exponentially damped pattern of oscillation with fairly regularly spaced

beats. Such beats are common in multidegree freedom systems. This motion is

repeated approximately, between each firing interval.

There are several practical questions that occur. First, what is theV slope of the muzzle when the projectile leaves the barrel? Second, what is

the lateral velocity of the muzzle as the projectile leaves the barrel? The

slope and lateral velocity at the muzzle affect the aim. There is very little

recoil movement of the barrel while the projectile is in the barrel. Con-

sequently, except for inertial effects on the barrel, recoil has little to do

with the first phase of the barrel motion. To get the muzzle slope and lateral
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velocity, we may consider the solution of the initial value problem 9Ver

only a small range of time t. As Collatz [81 points out, this condition

is extremely useful. It is when we must project over a long range of t

that initial value problems become sensitive. A third practical problem is

one of free vibration of a damped system. Some estimate of damping caused

by recoil is desirable, but damping due to dashpot devices probably is more

important. Air damping, structural damping and damping due to special

devices might be approximated by a row of dashpots along the barrel.

Structural damping may be relatively unimportant for short periods of time

and a small number of cycles.

Initially, the barrel accelerates backward. Hence, inertial forces

on it act forward and create tension in the barrel. The friction of the pro-

jectile is not superposable on this inertial effect, since it acts tangen-

tially (it is a follower force), whereas the inertial force acts along the

line of recoil.

There are two ways to approach the problem. One method is to treat the

barrel as a continuous tapered beam. The differential equation of the system

may be set up relatively easily. However, difficulty occurs with the cen-

trifugal force of the projectile, since it is a traveling point force. It

can be represented as a Dirac delta function, but it does not fit well with

continuous functions. The other approach is to use a finite element or piece-

wise polynomial approximation. The discrete nature of the centrifugal force

is well suited for this method. In any case, we must discretize the problem

to adapt it to the computer. Hence, it appears reasonable to do so at the

outset. The supports are readily represented by discrete spring elements.
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A. Estimates of Various. Ballistic Effects

1. Bourdon Effect. The Bourdon tube used in pressure gauges works

because the cross section is oval. The internal pressure tends to make the

cross section circular, and there is an elastic coupling that simultaneously

tends to straighten the tube.

The tendency of pressure in a gun barrel to straighten the barrel is

called the Bourdon effect. However, it is quite different from the Bourdon

tube effect. This is seen most clearly if we consider a barrel with bore of

rectangular cross section. Figure la shows an element of the barrel in the

bent position. Since the part below the neutral axis is shortened and the

part above the neutral axis is lengthened by bending, there is a difference

of area equal to 2bayxxdx. Hence, if internal pressure is p, there is an

effective load equal to 2bapy xxdx = pAy xxdx, where A = 2ba is the area of the

bore. If the ends of the barrel were sealed, the net load due to internal

pressure p would be zero, but this is not the case here, since the projectile

does not act like a sealed end. If the bore is circular an element above the

neutral axis has length (1 + ayXXsinO)dx, Figure lb. The corresponding element

below the neutral axis has length (1 - ayxxSin)dx. The difference in length

is 2ay xxsinOdx and the difference in areas is 2a 2yxxsinOddx. The projection

of this area is 2a 2yxxsin2 OdOdx. Hence, the effective load is

xx

5xx5o xx
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Since A =iaa is the area of the bore, the load per unit length of the

barrel is pAy. This is the same result that was obtained for the rectan-

gular section.

To obtain the differential equation for the barrel, we will employ the

Lagrange formulation. Consequently, we need an expression for the variation

of work, 6W. Hence, we write for pressure p

6W P pAy xx6ydx (2)

0

where (t) is the coordinate of the projectile. If we use a piecewise cubic

approximation,

y = a0 + aIx + a2x
2 + a3x

3  (3)

In. turn, we express a0, a1, a2, a3 in terms of nodal displacements and nodal

slopes of an element. These displacements and slopes are the generalized

coordinates qi" Thus,

6y =6a0 + x6aI + x2 a2 + x36a 3

(4)
Yxx 2a2 + 6a3 x

and
6W = pA (2a + 6a x) (6a + x6a x 26a + x36a3)dx (5)

f 2 3X a0 x 1 2 xa 3)d 5

0

Hence, since a0, al, a 2 , a3 are linear functions of the generalized coordinates

qi, we obtain (with the summation convention)

6 = pij qi 6q J
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where (p..) is a matrix in which the elements p.j are functions of time t.
ii

Since p and are known functions of t, Eq. (5) represents the contribution

to SW from the pressure behind the projectile.

After the projectile leaves the barrel, there are pressure waves in the

barrel, but they probably have little effect on the barrel motion. Initially,

it seems reasonable to assume that the pressure effect is negligible after

the projectile leaves the barrel.

2. Axial Inertia. Axial inertia due to recoil may be calculated as

though the barrel were rigid. The tension due to this effect is then a known

function P(x,t). If we suppose that the barrel is inextensional, the shorten-

ing of the chord due to bending, up to the section at x = is

0

1 2

Effectively, then, an element of length dx is shortened by the amount 12x ,

1 2
and the potential energy of that element due to shortening is Py 2dx. Hcnce,

the strain energy due to bending is augmented by the amount

I J Py2dx (6)

0

where Z is the length of the barrel. This integral is a function of t, since

y and P are functions of x and t. Section properties of the barrel do not

enter here, except in so far as they affect P(x, t).
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Figure 1. Bourdon Effect.

588



From the finite-element viewpoint, the contribution to the potential

energy due to axial tension is

1 f P(al + 2a + 3a x2) 2dx (7)

All
elements

This quantity is a quadratic form in the a's and hence in the q's, but

the coefficients are functions of time t, because P depends on t.

3. Weight of the Projectile. The weight of the projectile is

F - mg (8)

where m denotes the mass of the projectile and g denotes the gravity

constant. Hence, the contribution to 6W of F is

6WF = F6y = - mg6y cos a (9)

where a is the angle of the gun barrel with the horizontal.

In finite-element form

6WF  -mg (6 a0 + x~aI + x2
6 a2 + x36 a 3 )cos y (10)

Only the a's in the barrel segment containing the projectile are involved.

We note that x = x(t). In terms of the generalized coordinates qi.,

Eq. (10) becomes

6WF = P'jqi j (1)

where most of the coefficients p'i are zero. Consequently, the Bourdon

effect and the weight of the projectile combine to give a contribution to

the total 6W of the form
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6W= P. .i6q. (12)
2ij j. J

where P.. = P .(t).

i3 iJ

4. Weight of Barrel. The potential energy of the barrel due to

weight is

£

V pg cos a f A ydx (13)

0

where A is the cross sectional area of the barrel material and p is the

mass density of the barrel. In finite element form

V = Pg cos a I (a 0 + a I x + a 2x
2 + a3x 3 )dx (14)

All
elements

Hence, this part of the potential energy is r linear form in the generalized

,)ordinates qi"

5. Axial Friction Due to Projectile. The axial friction force f, pro-

duced by the projectile on the barrel, acts tangentially. (Fig. 2.) In coin-

puting the contribution to 6W of f, 6Wf we set 6t = 0. Force f acts at the

instantaneous location of the projectile, at a distance s along the curve.

Thus, the displacement is determined. The component of f along the displace-

ment determines SW

The expression for 6W1 is cumbersotme. Tile tangential frictional force

Lends to straighten the harrel. lHowever, it )robably has only a small effect

upon the motion of the barrel. The tangential frictional force may
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be included by considering its components along the gun barrel and per-

pendicular to the gun barrel. These components may then be treated in the

same manner as the other lateral and axial forces.

B. Energy Formulation of the Lagrangian Function

1. Strain Energy of Bending of Barrel. The strain energy U of beam

bending is

U Ely2 dx (15)

2 f xx

0

where E denotes the elasticity modulus and I denotes the moment of inertia of

the cross section area. In terms of finite elements, Eq. (15) becomes

U = . EI(2a2 + 6a3x)
2dx (16)2 1

All
elements

Hence, U is a quadratic form in the qi, that is,

U =aiqlq (17)

The coefficients a.. are constants. However, if we include the potentialij

energy of the axial inertia with the strain energy, the coefficients are

functions of t. The strain energy of supporting springs must be included.

This may be easily done. Also, shear deformation effects may be accounted

for [7]. However, for simplicity they are not included in this discussion.

Nevertheless the effects of shear deformation may be important and they zill

be examined in the study.
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2. Kinetic Energy. The kinetic energy T of the barrel due to the

lateral displacement is

T A y0 2l dx (18)1 f 2

0

In finite element form, Eq. (18) is

f + 2 332d

S(a0 +ax ) 2 (19)
f 1 0A 1  2 3 x)d

All
elements

where dots denote time derivatives. Hence, in terms of generalized coordi-

nates qi, the kinetic energy of the barrel is a quadratic function of qi,

namely
1 ¢.

T -bjqiqj (20)

If rotary inertia is included, the additional term

p ly2 (21)

0

must be included in T. However, the generql form (Eq. 20) ef T is not

changed.

The kinetic energy of the projectile is T M (y2+ V where
2 2

v(t) is the axial velocity of the projectile. The term my is irrelevant

in the variational treatment, since it does not involve variations of the q's.

i1 2
Hence, effectively, T = m y or

2 t

Tp mi (A +; x +a x 2 + Ax 3 )2
2 m( 0 + 1 + + 3

where the a's are the coefficients in the deflection function for the tube
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interval in which the projectile lies at time t. For the projectile, x

is a known function of t. Hence, if the projectile is considered to be a

particle, T is a quadratic form in the four q's that pertain to the
p

finite element in which the projectile lies at time t. Hence, the co-

efficients in this form are functions of t, and furthermore, the relevant

q's change as the projectile (particle) moves from one finite element to

another. It is apparent, however, that Eq. (20) remains valid for the

combined kinetic energy of the projectile and the tube, provided that the

coefficients b.. are suitable functions of time t. We note that it is
13

possible to transfer the exciting effect of the projectile into the ex-

pression for 6W by introducing the virtual work of the centrifugal force

and the Coriolis force of the projectil.e, but it is simpler to include

the effect of the projectile in the kinetic energy term.

3. General Formulation. With the above results, we may write the

Lagrangian L of the system

L =T -a qq .- a q. (22)
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where the last term is the weight term- The Lagrange equations of

motion are

d 3L
dt j) D4 R. (23)1 i

where by

6W = Ri6qi (24)

we obtain

R. = p...(25)
i pij qj

The effects of viscous damping can also be included in Eq. (23). Then, the

equations of motion of the system take the form

b. q + c. q. + a. q. = R. + a. (26)

Since R. Pij q., it can be absorbed in the term aijqj. Hence, the

differential equations of motion take on the form

bijqj + cijqj -+ aij qj = l(27)

The initial conditions for integration of Eqs. (27) are

(0)q= and ((0) for t = 0 (28)
qi anq i q.

Equations (27) and (28) form a well-defined initial value problem.

4. Dashpot Damping. Let a single dashpot lie. at x x (Fig. 3). The

resisting force of the dashpot .is cDy /Dt where c is the dashpot constant.

Let the dashpot lie at a nodal point. Then, y q Hence, all c. . are

zero except ckk e. Then all the difLferential equations (Eq.' 27) arc the
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Figure 2. Axial Friction.

Figure 3. D~amping.
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A

same except the one for which i k. That differential equation'has the

extra c term in it. If several dashpots act at node points, their intro-

duction presents no problem.

C. Relative Importance of Various Modes of Motion

According to linear elasticity theory, there is no coupling between

torsional modes and bending modes of a tube since torsional modes entail

only shearing strains. In the Bernoulli theory of bending, shear deforma-

tion is ignored. However, even if shear deformation is taken into account

in bending, it is symmetrical about a diameter and causes no torsion.

As an example of the relative magnitude of frequencies in torsion and

bending consider a uniorm steel cantilever tube of length L = 153.225 in.

long, with internal diameter 2.36 in. and external diameter 6.6 in. (These

dimensions approximate the dimensions of the Rodman Laboratory cannon forward

of the breech.) For steel, the mass density is p = 7.27979 x 10 lb.sec2/

4 6 2
in. the modulus of elasticity is E = 30 x 10 lb/in. , and Poisson's ratio

isB
is v = 0.30. The lowest bending (circular) frequency isw = 53.27 rad/sec.

B
This yields a natural frequency of f= 53.27/070 = 8.48 cycles/sec. The

1
T

lowest torsional (circular) frequency is wl = 1290 rad/sec. For higher modes

in bending, we get

B B B
i 53.27, = 333.85, w3 = 934.8

B B
W4 = 1831.8, w = 3028

4 5

T B B
Hence, w for torsion lies between W3 and w4 for bending.

596



Breathing (radial expansion and contraction) modes have much higher

R
frequencies. In fact,.for the first breathing mode w1 = 104790 rad/sec.

(based upon plane strain theory). Thus, the first breathing mode frequency

B
is about equal to the 27th bending mode frequency w2 7 " To compute the

higher bending mode frequencies, we may use the close approximation

B 1 2 72r(E/)/2;n 2 Ln - 2)n

where r is the radius of gyration of the cross section. Hence, the bending

frequencies for a tube are approximately

B 12 2 E(r + r2Wn (n - 1) _ ; n > 4
n 2 2L 2n>4

where L is the length of the tube and r0  and r1  are the inner and outer

radii of the tube.

For the torsional frequency, it may be shown that

T = (2n - 1) (G/p) 1 2 ; n = , 2, --

where L is the length of the tube and G = E/[2(l + v)] is the shear modulus of

steel. Formulas for the breathing modes are much more complicated since they

contain Bessel functions of the first and second kind.

Since the lowest torsional frequency (1290 sec- ) is much higher than

the lowest bending frequency (53 sec -), one should expect that nonlinear

eftects would cause negligible coupling between torsional and bending modes,

T B
particularly if w for torsion does not resonate with some w for bending.
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Because of the rifling in the cannon bore, the projectile exerts a

moving torsional couple on the barrel. It is not particularly difficult to

determine the resulting twisting motion of the barrel. Hence, in the analysis,

one may let the initial torsional motion of the barrel (when the projectile

leaves the breech) be arbitrary.

As noted previously, by the theory of linear elasticity, no coupling

exits between torsional and bending modes. Consequently, according to linear

theory. a cantilever tube that is vibrating freely in a bending plane (say

the vertical plane) will not deviate from that plane if it is given a pre-

scribed torsional oscillation at the root. However, there may be a secondary

(nonlinear) effect that causes some coupling between torsional and bending

vibations. If so, then lateral forces (e.g., the lateral centrifugal force

of the projectile, te Bourdon effect, etc.) would generate lateral vibrations.

In particular, if quadt,'tic (nonlinear) terms in the strain-displacement

relations are retained, one may be able to exhibit nonlinear coupling between

torsional and bending modes (See the example on p. 271 of reference 8).

Another possibility is that an infinitesimal horizontal (or vertical) bending

vibration is unstable, in the sense that the firing causes it to increase.

The Bourdon effect and the centrifugal force of the projectile tend to

aggravate the deflection.

IV. METHOD OF SOLUTION

During the time 0 < t < t1  that the projectile is in the barrel, the

aij of Eqs. (27) are functions of time. Ordinarily, t1 is of he order of 5
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milliseconds, whereas, the interval of time T between firings is of the order

of a 1 second or so. The fundamental period of vibration of the barrel is

in the neighborhood of 25 milliseconds. Thus, to determine the motion of the

barrel as the projectile exits from the muzzle, we must solve the initial

value problem (Eqs. 27 and 28) for a range of t covering the few milliseconds

that the proje-tile is in the barrel. Collatz (9) suggests the Runge-Kutta

method or the finite difference method for treating initial value problems of

ordinary differential equations. Piecewise polynomials may also be used to

treat initial-value problems (10). These methods and other methods should be

considered in the study.

After projectile exit, the coefficients of Eqs. (27) are constants.

Then, the problem reduces to one of damped vibration of the barrel. A particu-

lar solution of Eqs. (27) is readily obtained. To obtain the solution of the

homogeneous part of Eqs. (27), we let (8)

rt
qj = z.e (29)

Then, Eqs. (27) may be written (for n coordinates)

n 2
E (r b.j + rclj + a ij)z. = 0 (30)

j =i 1

The necessary and sufficient conditions that Eq. (30) be satisfied is that

det(r2 bij + rcij + a) = 0(31)

Equation (31) has n roots of the type r = - c + iw in which c > 0 and W > 0.

Let the n roots be r -c + i= - c2 + iW r c + iW
c1  l'] r2 c 2' r3  3 -

r = -c + iw . For each of these r's there corresponds a set of z's, given
n n n

by Eq. (30). The z's are determinate except for an arbitrary constant factor.
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Let the z's be given by

i O
z. iP. J (32)

Then the n values

(1) (1) ij I  (2) (2) iOj (2) (n)= (n) eJ (n)... , z. = e (33)
J Jj

The homogeneous solution of Eq. (27) is a linear combination of the z 's.

Thus, the general solution is
-Ct

(1) 1  (1)
q =A p e sin(wit + - yl)

+ A2p (2)e C2tsin(w2 t + 0

+ (34)

+AP (n)e n (Wt + -Y(n)

+ (particular solution

where the A, A2, ---, A, Yl, Y2 9 -- yn are the 2n arbitrary constants.

These 2n arbitrary constants are determined from the initial conditions for

the damped vibration, namely

(t I ) (tI )
q qj , q q for t =t1  (35)

Sj j

(t) (t
The values of q. and q. are thus obtained from the solution of the

initial value problem which describes the motion of the barrel from the time

of firing to the time that the projectile exits from the muzzle.

In general, the study should yield the transient response of variable

thickness gun barrels, including the effects discussed.
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During a recent investigation concerning the interior ballistic causes

of the erratic flight behavior of a subcaliber kinetic energy projectile,

the requirement arose for an accurate determination of the final launch

conditions of the projectile sabot assembly as well as the exterior ballistic

performance of the subprojectile. The available instrumentation and measure-

ment techniques proved to be inadequate. Therefore, a new system had to be

developed. A series of electromagnetic pulse detector stations, each con-

sisting of any array of coils of wire which are arranged circumferentially

in a ring configuration, are employed along the flight path of the projectile.

A cylindrical permanent miniature magnet is inserted in the nose of the pro-

jectile. As the projectile traverses through the stations, the moving magneiic

field of the magnet induces electric currents in the coils of wire which are

recorded on tape in analog form. Using 12 coils of wire per station, we are

able to determine from the experimental data the 12 unknown variables

representing the location of the center of the magnetic dipole, its linear

and angular velocities and the direction of its polar axis for each point of

time. Reduction of the six degrees-of-freedom motion of the projectile from

these quantities is trivial.
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I. INTRODUCTION

A. Discussion of Prior State-of-the-Art

A variety of instrumentation/measurement techniques have been developed

which can be and are used to obtain individual, mostly distance-averaged,

parameters of the early flight trajectory of a projectile. The most encompassing

one up to now is based on sequential orthogonal photographic recording em-

ploying high-speed photoflash techniques in the visible as well as in the

x-ray spectral range and background screens with reference lines. This type

of recording requires advanced knowledge of the linear velocity of the pro-

jectile to ensure proper timing of the photoflash. Reduction of the photo-

graphic data yields, in addition to corrections in the assumed velocity, the

yaw, pitch and roll of the projectile averaged over the whole recording

distance and, when the projectile is properly marked, the spin also. This

measurement system does not lend itself to quick and automatic data processing

and evaluation and is contrary to the long term trend which has been away

from the use of cameras and photographic film for the recording of the

instrumental data. Therefore, attempts are currently being made to replace

the optic-photographic recording by optic-electronic witness screen instru-

mentation/measurement techniques [I]. Most of them are still conceptual and their

proper function has yet to be demonstrated. Basically, their principle is

simple: a raster of parallel light beams is established horizontally and

vertically in a plane which is orthogonal to the flight direction. Two sides,

non-opposing, contain the light sources and the other two ai array of photo-

diode sensors. When an object passes through the plane, a shadow will be

thrown onto each of the two detector arrays, the extreme positions of which

are then recorded as function of time. A sequence of such instrumentation

stations permits the obtainment of the same flight information as the optic-
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photographic method. In addition, this system can also be used for the

determination of the flight performances of individual rounds fired In rapid

succession.

Apart from this kind of photographic recording, a combination of

instrumentation and measurement techniques is necessary to collect the set of

flight data required for the analysis of the flight performance of ballistic

objects.

Linear velocities are generally determined either directly by Doppler

radar or indirectly by distance versus time measurements. Non-optic examples

of the later method are the induction and high-frequency oscillator coil

instrumentations. In the induction coil system a projectile magnetized to

saturation is shot through two one-loop induction coils which are separated

by a well measured distance. The pulses of the induced voltages trigger and

stop a time counter. From the disiance and the recorded time the average

velocity within the measured distance is computed. In the high-frequency

oscillator coil instrumentation [2] the projectile is fired through a metallic

coil which forms an inductance In a stable high-frequency oscillator. When

the projectile flies through the coil, the permeability and the dielectric

constant in the cross-sectional area and, therefore, the inductance of the

coil change. This causes an increase in the frequency of the oscillator which

is recorded as a function of time. The recorded signal3 are then processed

to obtain the contour of the projectile and the time of passage. From that

velocity is determined.

The spin of projectiles is mainly measured with a parallel wire spin

sensor, besides optic means. In this technique the projectile is magnetized

along one side. A long wire antenna parallel to the trajectory of the pro-
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jectile monitors the change in the magnetic field due to spin during the

bypass of the projectile. The induced current is sinusoidal and its frequency

corresponds directly to the spin. However, whenever tne magnitude of pre-

cession or nutation becomes large, thi5 spin measurement technique fails.

To determine precession and nutation, the projectile is fired through

a sequence of yaw cards. The orientation of the projectile axis at the yaw

card locations is then estimated from the shape of the penetration holes.

From the orientations the precession and nutation averaged over the measured

distance are obtained. This method is not only inaccurate but also influences

the trajectory of the projectile due to the successive impacts of the pro-

jectile on the yaw cards.

Another method for obtaining velocity, spin, precession, and nutation,

which is mainly used for investigation in projectile in-bore dynamics, relies

on instrumenting the projectile with accelerometers and transmitting the

signals via radio telemetry. But this method is extremely expensive and

practically cost prohibitive for other than purely research oriented investi-

gations.

Apart from the optic-electronic witness screen technique and the last

* mentioned method, none of the previous ones allows an adequate determination

of the rate of the change of the ballistic parameters in the intermediate

ballistic and early free flight regimes. In addition, we do not have an

adequate irstrumentation/measurement technique for the investigation of the

flight performance of salvo rounds.
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B. Historical Aspects.

About a year ago the Ballistic Research Laboratories were asked to look

into the causes of the erratic flight behavior of the 105mm M392A2 subcaliber

kinetic energy round. It was a classical in-bore dynamics problem, in essence.

To reveal the interior ballistic causes for the adverse free flight performance

of the subprojectile one has to determine the parameters of the initial

condition of the projectile-gun system, record the entire in-bore mj'ion of

the projectile assembly and the gun tube motion,3nd evaluate the final

performance of the subprojectile in such detail that the initial state of the

projectile-gun system can be uniquely related by a temporal sequence of in-

bore and launch dynamics data to the exterior ballistic trajectory. Due to

the complexity of the projectile itself and the in-bore motion of its assembly

components we were forced to put together an experimental and theoretical

program which utilizes the available technology to the fullest extent and

requires the adaption of new concepts in instrumentation, measurement and

theoretical evaluation techniques. The electromagnetic pulse instrumentation

and measurement technique was one of them. It arose from the requirement

of an accurate delermination of the final launch conditions of the subprojectile-

sobot assembly as well as ihe exterior ballistic performance of the sub-

projectile. For the evaluation of the final launch conditions we needed the

spin of the sabot petals, the sabot pot and the subprojectile at muzzle exit.

By recording the impact of the sabot petals on a wiiness board, we can quite

easily obtain their spin at muzzle exit from their displacement and time of

flight. But, for a concurrent spin measurement of sabot pot and subprojectile,

the available instrumentation and measurement techniques proved to be inadequate.

We had a similar problem with the determination of the free flighi pertormance

of the subprojectile. Although we will record thp projectile Impact on a

608



target witness board to evaluate the dispersion about one and a half kilometer

from the site of the gun, we needed the precession and nutation of the sub-

projectile in addition to its spin. Since the standard exterior ballistic

method, sequential orthogonal photographic recording, does not lend itself

to quick and automatic data processing, we looked for a measurement technique

which would provide the spins of the sabot pot and the subprojectile as well

as the flight trajectory of the subprojectile.

The exploitation of the magnetic dipole radiation which is produced

by a moving magnet seemed to be the most promising way to go. Since the

standard parallel wire spin sensor technique to measure spin fails for

projectiles with excessive yaw, we fell back to the fundamentals of electro-

magnetics.

II. BASIC CONCEPT

Let us look at the exlernal magnetic field of a long cylindrical magnet

and probe its magnetic induction, B, along an arbitrary straight line (Fig. I).

As we move from left to right, we see that the magnitude of the magnetic

induction increases slowly until it reaches a maximum at point 2. From here

on it decreases rapidly to zero. After reaching the minimum, the magnetic

reduction rises steeply through the points 5, 6, 7, passes through a maximum

and decreases asymptotically to zero. Since the magnetic field at a point

is only a function of the distance and the orientation of the magnet, we

can probe the magnetic field at a point by moving the magnet along an

arbitrary path. The results is the same as for a resting magnet and a

moving point. In principle, knowing the magnetic field distribution of

ihe magnet as function of time, we can determine the motion of Ihe magnet.

Therefore, we have to look for a suitable means of obtaining the magnetic
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DIPOLE AXIS

By

2

Figure I. Magnitude of the Magnetic Induction Along a Straight Line Inter-

section.

induction or a derivative of it. One quantity that we can conveniently

measure is the electromotive force which is produced in circuits placed in

time-varying magnetic fields. Using Faraday's law of induction we can relate

the electromolive force to the time rate of change of the magnelic flux which

links the circuit.

Based on this idea we can design an instrumeniation to record the six

degrees-of-freedom motion of a projeclile. A series of electromagnelic pulse
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detector stations, each consisting of an array of coils of wire (circuits)

which are arranged circumferentially in a ring configuration, is employed along

the flight paths of the projectile (Fig. 2). As the projectile traverses the

stations, the moving field of a miniature magnet which is inserted in the

projectile induces in the circuit an electric current which is recorded by a

magnetic tape recorder in analog form.

-i --I\ - __. . _.I

STATION N-1 STATION N STATION N+1

COIL OF WIRE

.1 0

Y L1/

N.,

- I

- I I DIPOLE AXIS

Figure 2. Projectile Traversing Through the N-th Electromagnetic Pulse Station.
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The design parameters of the instrumentation have to be obtained from

sensitivity analyses using realistic bounds for projectile motion. For that

purpose, we must derive explicit equations relating the electromotive force

to the motion of the magnet and the projectile, respectively.

Ill. MATHEMATICAL FORMULATION

Faraday's law of induction [31 relates the electromotive force V produced

in a circuit to the time rate of change of the magnetic flux F which links

the circuit

(3.1) V=9c(.dZ)=- - F-

where C is a closed curve spanned by an arbitrary surface S, both stationary

in the observer's frame of reference. dt and di are the corresponding line

and areal elements. t and are the electric density and the magnetic

induction, respectively. For a "simple" medium like air the magnetic-

induction vector (X, t) is given by

(3.2) H,

where A (x, t) is the magnetic field intensity vector, p is the permeability

of the medium and x is the position vector from the center of the magnetic

dipole to the observation point. The magnetic intensity, in turn, can generally

be expressed in terms of potentials [3]

63.3)1li0 e m m
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where Xe' m' and m are respectively the electric vector, magnetic scalar

and magnetic vector potentials. Since a permanent magnet does not have any

electric or magnetic vector potentials, the magnetic field intensity vector

reduces to the gradient of the magnetic scalar potential

(3.4) m

The scalar potential outside the magnet can be written as an expansion in

magnetic nmultipoles

(n)
(3.5) =n)

mn m

where P(n) is the potential of a magnetic multipole of the n-th order.
m

Because there is no magnetic monopole, the lowest nonvanishing term in the

expansion is of first order, corresponding to a magnetic dipole. For a

homogeneous and isotropic cylindrical bar magnet magnetized coaxially, its

far field is practically identical to that of a dipole because only its

near field is influenced by magnetic multipoles of order n, n greater than

one. Since in the experimental arrangement the length of the miniature

magnet is much smaller than the distance between the center of the magnet

and the observation point, the far field condition prevails and we can

approximate the field of the magnet by that of a magnetic dipole. The scalar

potential of a magnetic dipole of moment m is given by [5]

(3.6) =I =
m m 33

4 613



where x is the magnitude of X. The geometric arrangement is shown below (Fig. 3).

P

31'

2/

Figure 3. Dipole Geometry Relative to the Observation Point P.

The dashed coordinate frame is parallel to our frame of reference, the origin

of which lies in the center of the Nth electromagnetic pulse station. The

dipole moment can be presented by

[i(3.7) m=ms, S:=(Sls2S )

where m is the magnitude of the magnetic dipole moment and s is its unit vector

of orientation. Combining Eqs. (3.4), (3.5), (3.6) and (3.7) we obtain for

the magnetic field intensity vector

(3.8) H=- (s x)

-- v (sxX3
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Note that

(3.9) x= = -

from Fig. 3.

Let us now express the vector P P as a function of the instrumentation

geometry as sketched in Fig. 2. The point P=P. can be any point on the

surface Si which is formed by the closed loop Ci of the i-th coil of wire

in the electromagnetic pulse station. Optimal symmetry in the sensor

arrangement and hence in the temporal-induced electromotive force is assured

for three distinct orthogonal orientations of the loop surfaces with the unit

vector normal to the surface pointing into the radial, tangential and axial

(flight) directions, respectively (Fig. 4).

RADIAL TANGENTIAL AXIAL

Figure 4. The Three Optimal Orientations of the Loop Surface of the Coil of Wire.

By reference to Figs. 5, 6, 7, and 8 we can derive the vector P for the

loop orientations.

615



e'=(cos0,sin4,O)

3e =(-sin4,cosO,O)

e=(O,O, I)

0<4<2Tf

2'

Figure 5. Coordinate Frame for i-th Coil of Wire.

For the first orientation (Fig. 6)

r r(cos"e +si n~es)

2I dt=cos,sin ,O)df

ip' df=rdrd'

Figure 6. Geomotry of the First Loop Orientation Having the Unit Vector Normal

to the Loop Surface Pointing Into the Radial Direction.

we obtain

(3.10) P =+=ei+cse rsnezcsrinosinrososrinF).
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For the second orientation (Fig. 7)

I4-

r=r(sinie+cos'e)

P 0<<21r

d=(-sinp,cos0,O)df

df=rdfdp

Figure 7. Geometry of the Second Loop Orientation Having the Unit Vector Normal

to ihe Loop Surface Pointing Into the iangential Directior.

we have

(3.11) P--l=9+r=(R+rsin )elrcos~e3=(Rcos +rcossin 'Rsin +rsinsin 'rcos )

For the third orientation (Fig. 8)

.,4.

r=r(cosel+si ne')

2 ' dT=(O,O, I)df

df=rdrdp

Figure 8. Geometry of The Third Loop Orientation Having the Unit Vector Normal

to the Loop Surface Pointing Into the Axial Direction.
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we derive

(3.12) Po =A+=(R+rcos)ei+rsin0e

.=(Rcos +rcos~cos*-rsin~sin*,Rsln +rsin~cos +rcos~sin *,O).

IV. COMPUTATION OF THE INDUCED ELECTROMOTIVE FORCE

Denoting the vector PoPM by o and using Eqs. (3.10), (3.11) and (3.12),

respectively, we can express the vector =P- for the three sensor orienta-
M

tions as

(4.1.1) X= -( u+rsincos, v-rcos~cosp, w-rsini),

(4.1.2) x= -( u-rcos~sinJ, v-rcos~sinp, w-rcos), and

(4.1.3) x= -(u-rcos~cos +rsinsinp, v-rsin~cos*-rcos~sinP, w

whereby (u,v,w)=x o-Rcos~,y -Rsin,Z ).

Substitution of these position vec+ors, the magnetic field intensity vector,

Eq. (3.8), and the areal elements as given in Figs. 5, 6, and 7 into the

formula for the electromotive force V, Eq. (3.1), yields

(4.2.1) V= f dpf drr([coslA3-3uDA5-3sinDrcosPA Is
o 0

inA 3-3vDA 5+3cos4DrcosA 5Is2

-3wDA5+3 Drsin#A 5Is3),

2 -1/2where A=A(r,i)=[A-2(Bcosp+Csinp)r+r2]

A=u +v +w , B=-usinl+vcos4, C=w, D=ucos+vsln4;

(4222 r nmAd 3 5

4m fddfdr r([-sin A3-3uDA5+3cosODrsin'P5 s
0 0

+[ cosA 3-3uDA 5+3sI0nDrsin AIs 2

+[ -3wDA 5+3 DrcosO As 3),
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where A=A(rp)=[A-2(Bcos0+Csinp)r+r 
2 - 1/2

A=u2+v +w, B=w; C=ucos+vsin , D=-usin+vcos );

(4.2.3) V= L fd fdr r([ -3uDA +3Dcos~rcosA -_Dsin~rsin*A5Is41r dtI
0 0

+[ -3vDA 5+3Dsin~rcos A 5+3Dcos~rsin A5]s2

+[A3-3wDA 5  Is3),

2 1/2
where A=A(r,f)=[A-2(Bcosp+Csinf)r+r ]I

A=u2+v 2+w 2, B=ucosO+vsin, C=-usin4+vcosp, D=w.

To express the electromotive force V as an explicit functions of its independent

vari-ables, explicit analytica! solutions for +he four areal integrals

2'r r 2 -3/2
(4.3.1) lI=f d~fdr r[A-2r(Bcos0+Csinq)+r I

0 o

21r r 2 -5/2
(4.7.2) 12=f dfdr r[A-2r(Bcosp+Csin)+r I ,

0 0

2T r 2 5/2
(4.3.3) 13=f dfdr r(rcos)[A-2r(Bcos+Csinp)+r2

- / , and
o 0

2n r 2-
(4.3.4) 14=f dpfdr r(rsinf)[A-2r(Bcos +Csin,)+r I

o 0

mubt be derived. Using Leibnitz's theorem for differentiation of an integral,

the quadratures (4.3.2), (4.3.3) and (4.3.4) can be written as derivatives of

the first integral

(4.4.1) 12
2 3A I'

(4.4.2) I 3 I and
3 3 3B
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1a
(4.4.3) 14- -4 311'

thereby, reducing the number of integrals to be computed to one. Since, due

to the presumed geometric arrangement of the detector system A is always

larger than Ir -2r(Bcos+Csin)I, the denominator in Eq. (4.3.1) can

be expanded into a binomial series

2 -3/ 2 - v2i-v(4.5) [A-2r(Bcosp+Csin)+r 2  A 3/2 = ( 3/2 )A-P Z (")(-)'2'r
=0 V=O V

(3cosO+Csinp)V

Inserting this series expansion into Eq. (4.3.1)
A3 /2  - -3/2 A- 11 U ) - r~ 2p-v+ 27

(46) 1=A E~ C )A- E ()-'vfdrr ][fd(Bcos +csin )%)](4.6) I A' 2  3/
0 0

and carrying out the quadratures [5]

(4.7) Crdrr21-v+l r 2p-v+ 2

0

2)
s s ) ~ -2n) r(n+l/2) 2+2)n

(4.8) [f d(Bcos+Csin)v=2n6(v r(l/2)r(n+l) (B +C n=,I,2,...,
0

we obtain the series

49A-1/2 O -3/2 )-E/2 [11/2] P) 22vr(v+i/ 2 ) [p/2-v V
4 I 1=0 11 vo v (1-v+l)(/2)r(v+l)

with E=r2/A and n=(B2+C 2)/A.

We can rearrange this series as a series of ascending powers of c. Since

(4.10) 3/2 r(v+l/2)22( r(2u+2)
V 2V r(I/2)r(v+l)(-v+l) 22u r( l 2(v+lr(P_2v+l)(Pv+l)

we have
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F( )

E- l~ 2(l rC).

2 (2)r ()r(2).2

_____ ___I rC(6)2A 11=2 £()r +c C
2r(3)r 2(2)r(I).2 2 4r(3)r 2(I)r(3).3

________ _ C2 r(8) 3
6r-(4)r (2)r(2).3 2 r(4)r2 (lr(4).4

r(I),,2  2 r ________ 3ijr4 r 1 E~ +(IE)E
L8 2 2'~
2 r(5)r (3)r(i).3 2r(5)r (2)r(3).4

+ (i0) 4

28r(5)r 2 mrt5).5

jj5r(12)n 
2  

___3_+_E-_______ 4
10()2 23r2. + 10 r(6) 2)r(4).Or2) (36)r(2)(.4.

+ r(12) 5
E-2 10r(6)r 2(I)rC6).6

Collecting the coefficients of the same power of e, we derive the new power

series

(41) A/ 2 6 -() r(2p+2)el P()1 r(2u+2v+2)r 2(11+1)
1 0 2211 (,j~~r~ji2) 0 2 2vr(2u+2)P'(p+v+l)r 2(v+i)r(p-v+i)

Let us now define a function

e~ky £ k 6 m y y

where C =2 -2(Z-1k) r(2Ze+2k+2)
r(t+k+l)r(k+')
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Ktk(B -) m 2 -2m r(2m+2Z-i2k+2)r(Z-+k+I)r(k+2) T(-n 2-2n
m y r(2+2k+2)r(m+fe+k+I)r(m+k+2) o

I m+k r(m+k+t&'l)r(2n+2m+2Z±2k+2) Rn
(n+l) n+k r(n+m+k+Te+l)r(2m+2t+2k+2) yh;

and derive functional relations for its derivatives L GL6, and LG.3a 'a0 ay

For the first one, we have

a (Z+k+3/2) co Pk. a)M.
(4.14) Gt Z aB'k= Ck E(m+l)K

The second one, .G, is given by

(4.15) ~.G (,,~ (+k+3/2) a 0 ~ ( m 2r(Zej2+2k+2)r(mP+k+l)

r(k+2) T (_n 2 -2n n (m4k) r(m-Fk-ZIe)r(2n+2m+2t+2k+2) (0) nl1
r(m+k+2) o r(n+l) n+k r(n+m+k+Z+l)r(2m+2Z+2k+2) y J

Because r- I(n) = nr' (n+l)=Q for n'<O, the first nonvanishing term begins with

m=l and n=l. If we let P~m-1 and P~=n-l, we obtain

a13 ka'o')=y y t'k ;* Y2 2U+2 r(2t 2k 2)r( Zk 2)

r(k+2) ~ ~I I (U+k+l) r(p+k+t+2)r(2v+2u+2PZ+2k+6)
r(l,+k+3) 02v+ 2rvl v+k+l Tv+pj+k+PZ+3)r(2j+2Z*2k+4) y

Let K=k+l and )X=Z+l, we have
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(4.17)2+ 2( C r(2X+2K-2)]

(2X+2K+2)r(X+K-I)r(K+I) ~

22 r(2X+2K-2)r(A'K+I)r(K+2) 2/ i ) op yy

=aGX, (a$,)=a ZIk+l(aca,y);

hence the derivative aG obeys the recurrence relation

(4.18) .GZk (I,l3,y)=aG Z+I k+l (c,$,y).

The third derivative, L ,is given by

(4.9) G~~y)y ++3/2) a o(c a (m m r(2m+2Z+2k+2)
ay GZ,k'') (?)Ck 0OY 2 r-(2f+2k+2)

r(C+k~I)r(k-12) )n I (m+k) r(m+k+Z+I)
r(m+C.+k+I)r(m+k+2) 6o 2n r~~)n+k r(n+m+k+t+TI)

r(2n 2rn422k+2)(Z-+k+m~n±3/2) ( n
I(2m+2Z+2k+92) (

Si nce

(4.0) (mk-f.+I ) r (2n+2m+2.e+2k+2) (P&k+m+n+3/2) L r (r+k+Zi*I)
(420 rI(n+m4-+k+I )r(2m+2Z+2k+2) 2 2 r(m+k+Z+2)

r(2rn+2.C*2k+4) r(2n+2m+2ei-2k+4) r(m+Z+k+2)
T(2m+2Z+2k+2) I(2m+2fZ+2k+4) r(n+m+Z+k+2)
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we get

(421) G k(c,,)= (P+k+3/2)( C. r(/+k+I)T/(2C+2k+4) 0 cc )m
-G£, 22(f+k+2),r'2Z+2k+2) o

m r(2m+2t+2k+4)r(t+k+2)r(k+
2) (_)n I .m+k.

2
2mf(2+2k+4)r(m+k+Z+2)r(.k+2) 

0 22 r(n+l) +k

r (2n+2m+2L+2k+4) r (m+Z+k+2) n

r(2m+2+2k+4)V(n+m+Z+k+
2 ) y

=-GL ,k(a,,Y).

Therefore we can express the derivative 3G/ay 
by the recurrence relation

(4.22) -- Gk(a,a,Y)=-G +Ik(at,
6' Y).

y , ktlk

From Eqs. (4.12) and (4.13) it is evident that the first 
areal integral

in terms of the G- function is given by

(4.3) I =rG 2 2 2
(4.23) II=aG00(r2,B +C ,A)

Inserting this solution into Eqs. (4.4.1), (4.4.2) and (4.4.3) and carrying

out the differentiations, we obtain finally

S2 G o(r2,B2+2,A

(4.24.1) 1 2= 10 B +C2 A)

2 2 2 2+2
(4.24.2) 13  Br G1 I(r B +C ,A), and

(4243) 142 C 2  2 2 2
2 (r2,B2+C2,A)

(4.24.3) 14= nCr2Gii(rB
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Substitution of these series solution into Eqs. (4.2.1) to (4.2.3) gives

(4.25.1) V= md([I/2cos G-uD(G -G )-acos4D2G I]SI+h [l/2sin~~~G0 0-uD(G 1o-aGI 1  sin4 2
1 J

" 2 dt 00 0-1

(V/2sin G -vD(G -aG )-sinD 2GlIs2+

0d0sn~~ 10 11 11 25

II

(4.25.2) V= -[-/2sinOGoouD(Glo- Gl)+asinoD2GllIsl+

[1/2cosOG00-vD(Glo-aGl )-acos D)2 GlIs2+

[ -wD(Go-aG1 I ) 3s3) ,

(4.25.3) v= m 1I

E -vD(G I0-aGI ) 2+

[I/2G00 -wD(G 10-G 11 )-aD2G I s 3

where Gtk=Gek(a,3,y), =r2, 0=B2+C2 , and y=A=u2 +v2 +w2  Only the variables

(u,v,w) and(sl, s2 ' s3 ) are functions of time; therefore we can represent the

differentiation operator by

d u 3 sI  ' s2  a 's3 ._

(4.26) d _ u -v a+ L. a +L a +--- +as 3-dt 3-1 au at av at aw at asI  at as2  t as3

Using Eqs. (4.26), (4.18) and (4.22) we can carry out the differentiation.

After a few elementary manipulations we finally obtain for tho electromotive

force
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(4.27) V= 1S +a2 2+ 3 3+ES1T11 "+S2 2 1 + 3T3 1]+EST1 2+2T 22+s3s32 +

CsIT 1 3+s2T2 3+s3t3 3 T ),

where the functions a. and T. . (i,j=1,2,3) are given byI IJ

3 0 i123

(4.28) C. =.E M A i=1,2,3,
Ij=l ii j

5

i k iM2kBk, i=1,2,3 and j=1,2,3, with

G00 (G -aG

2-0 10 11

A= D(G o-aGI) B= 3aDGII

aD 2G11  2D(G20-G 2 1)

2aD(G 21-aG22

21222a2D3G2 2

The matrices M are different for each of the three distinct cases of sensor

orientation. For the first orientation with the unit vector normal to the

loop surface pointing in the radial direction, we heve

(4.29.1) cosP -u -COO~

MO=  sin -v -sin4

-0 -w 0

2 2 2
-(ucos4+vsin ) -cos 4~ u uOucos2 +vsin24) cos

MI= -(usin +vcos ) -sincos4 uv (u +v )sin24 sincos

wcos 0 uw wBsin4 0
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(sinp+vcos i) -sinpcosp vu I(U 2+v2 )sin24 sin~~cos#_

m =-cos rI3vsinO) -sin 2 0 2 v(usi20vo2O) si2

-wio0vw -wBcos 0

_WosO 0 wu wBsino 0

4= _wiO 0 WV -wF~c0sO 0

-D0o -W2  0

with a~r 2, 13132+C2' y=A A~u2 +\'2+ 2 ,B=-usinO+vcosO, Cw, and D=ucos d-vsinO.

For the second orientation with the unit vector normal to the loop surface

pointing in the tangential direction, we have

(4.29.2) -_in U sifl

-oo v -coso

o uw 0wcs 0

(3sn-cs) -i Uucoso+vsino) sin~cs 2uI 2

m (-cosvsiO) in~os -v (u2+v2)sin2o -sln~coscF

sn 0 vw -wCCSin 0

w = (sin-voO -o 0 wu2 -vwsn-cos 2O 0oF0
-wcosO 0 vw -wCsino 0

-D0 w 2  -W2 0

2 2 2 22 2with ar , 0=B +C , Y=A; Au +v +w ,Bmw,

(ucosOrIvsinO, and D=-usin4+vcoso.
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For the third orientation with the unit vector normal to the loop surface

pointing in the axial direction, we have

(4.29.3) O -u 0 1

2 21
MI[ o uv -uv

0 uw 0 0-u0 uw 0 0
00 vu -uv0

M 2= _w0 v 2  -v 2  0

-V0 vw 0 0

u0 w0 0

M= v 0 wv 0 0

-3w 0 w2  wJ2

with c=r 2, =B+C 2 y=A; A=u2 +v2 +w2  B=ucos0+vsin4,

C=-usin+vcos4, and D=w.

V. DATA EVALUATION PROCEDURE

It is evident from the anteceding expliLit formulae for the induced

electromagnetic force, that we have twelve unknown variables, namely the

relative position vector between the centers of the magnetic dipole and the

coil of wire, (u,v,w)=(x o-Rcos ,y o-Rsini,z 0), the linear velocity of the

magnetic dipole center, (u,v,w)=(x oyo ,z ), the orientation of the dipole

axis (sl,s 2,S3 ), and its angular velocity (Sl,S 2,s3). To uniquely define the

dipole motion at any instant of time, we need a set of twelve equations. We
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can satisfy this requirement by employing twelve sensors (coils of wire) in

a station. To optimize the symmetry in the experimental set up, we arrange

the twelve sensors circumferentially and equally spaced in a ring configuration:
2ir

(5.1) n - n, n=1,2,...12.

To counterbalance small deviations in the recorded signal strengths of the

twelve sensor-amplifyer-recorder systems due to minute differences in the

instrumentation, we introduce the gauge constants

(5.2) Cn; n=1,2,...12,

which must be generated by calibrational methods. Let

(5.3) V, nl,2,... 12,

be the recorded voltages, then for any instant of time we have a set of

twelve equations

3 3 3
(5.4) iliirSi~ g=  ' g '6 Jl[kj IT kjsklxjr nC Vnn/m, n=1,2,3,... 12, and

with twelve unknown variables. Since the velocities s. and xi, i=1,2,3, occur

only linearly in the above equations, this set of equations can readily be

reduced to a set of six equations with six unknowns. Selecting the v, v+4

+8th equations, v[1,2,...12], for the elimination of the siP i=1,2,3,

3 3
(5.5) s,- =  Ea1 jT] s)X +dj , i=1,2,3, with

i j k=1L i k kjj
jIC[v,\+4,v+8J

a ljA"/D, d =E EANOI]/D, D= EVi~i

I I i i

pe[vv+4,v+8] c[vv+4,v+8]

ji+4 p+8 p+4 Ij+8
A- O 7 a o+ (imod3)c[l,2,3J and (Pmodl2)c[l,2,...l2L,

i+l i+2 i+2 i+l'
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we obtain a set of nine equations with nine unknowns:

3 3 3
(5.6) .b X .= t ; b. E=kiEa I

J= J J k=lk i ijk

b i E a kj for all i, j, ke[1,2,3];

pc[v,v+4,v+8]

3
K K Kf = 6 - E a d;i=l

KIv,v+4,v+8 and KC[I,2,3,...12]

selecting the v+2, v+6 and v+lOth equations, vesl,2,...l2], to get rid of the

x., i=l,2,3,

(5.7) x.=Z E'. f K]H;
J J
K[v+2,v+6,v+ 10]

K=E I b K ,  K+4 bK+8 K+4 bK+8
K IbI j =bj+bJ+2-b+ 2bj+ I

(jmod3)[ I,2, 3], ( Kmod 12) l ,2,... 12],

we obtain a set of six equations with six unknowns:

(5.8) b. e.=Hf ,Xv,v+2,v+4,v+6,v+8,v+lO and (Xmodl2)C[I,2,.12];

j=l j j

e.= E EfK , j=1,2,3.J J

KC[v+2,v+6,v+ 10]

Solutions to tlhese equations can be derived numerically by minimizing the

function

(5.9) F -Ejijle-,bv7-Hfvl, \=1,3,5,7,9, l.
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This method ensures us a best fit of the variables (xl, x2, x3 ) and (Sl, s2,

s3 ) to the recorded data. Once these variables are obtained, we can use

Eqs. (5.7) and (5.5) to determine (Xl, x2, x3) and (s!' s2' s3)
" With this

outlined data evaluation method we can determine uniquely The flight trajectory

of the center and the motion of the axis of the magnetic dipole. Since the

position and orientation of the miniature cylindrical bar magnet represented

by a magnetic dipole is fixed within the projectile, tne six degrees of freedom

motion of the projectile can directly be derived from it using a proper

coordination transformation.

VI. DESIGN CRITERIA

The result, Eq. (4.28), cannot only be used for the establishment

of a data evaluation package but also for the derivation of proper design

criteria. The electromotive force depends on design parameters apart from

the twelve unknown variables. Two design parameters, namely the number of

sensors per station and ihuir positions in the ring configuration, have

already been determined previously:

(6.1) Number of sensors per station: 12,

Angular position of sensor: 4n= L- n, n=1,2 .... 12L~ n6
Still we have to establish the bounds for Ihe radius of the ring configuration,

-the radius of the coil of wire, the required amplification of the generated

signals, the dipole moment of the miniature magnet, the best orientation

of the coils of wire, the number of electromagnetic pulse stations and their

separation distance.

To determine the above design parameters (,f the instrumentation, we

carried out a sensitivity analysis for a case where the dipole center moves

with a velocity vz in a straight line along the center axis of the instru-
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mentation and the dipole axis rotates with a angular velocity w about that

axis. Varying the shortest distance of approach between the dipole center

and the observation point, the radius of the coil of wire at the observation

point, and the linear velocity, spin and magnetic moment of the magnetic

dipole, we established the design parameters for a prototype instrumentation.

Figs. 9, 10, and II, for instance, show The induced electromotive force in

24 coils of wire arranged circumferentially and equally spaced in a ring

= • lO-3m, =16msc
configuration for the data set R = .3m, r 6.35 10 3n, vz = 1460m/sec,

w = 5026.5 Hertz (=800 rps), and m = 2.5 10- 7 weber m, typical for the

M392A2 subcaliber round. The magnetic dipole m nenf assumed in the computa-

tion corresponds to a commercially available cylindrical ALNICO or ceramic

magnet with a length of 19mm (3/4") and a diameter of 3.2mm (1/8"). For the

first orientation, the unit vector normal to the loop surface of the coil of

wire pointing in the radial direction, a peak in the voltage envelope of

about 1.375mV occurs at about ± .llm from the plane of symmetry at t=O.

During passage at t=0 the maximum amplitude is about two thirds of the peak

voltage. The signal to noise ratio of our magnetic tape recording and repro-

ducing instrumentation puts a lower limit on the detectable signal amplitude.

Any signal below .5 percent of the peak amplitude is buried in the noise.

To compare the useful space interval in which the signals can be evaluated

for the determination of the flight trajectory we arbitrarily set forth a

10 percent threshold of the maximum amplitude for any instant of time.

Approaching from left we start with the evaluation as soon as the maximum of

the 24 amplitudes crosses this threshold value and continue through until it

reaches the cut-off limit on the descending branch of the right side. Using

this criterion we obtain thus a useful space interval of about 80cm. The

second orientation, the unit vector normal to the loop surface of the coils
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of wire pointing in the tangential direction, exhibits a behavior similar

to the first one. It has a peak voltage of .53mV at l.llm and a maximum

amplitude of .48mV at passage t=O. Its useable space domain is about 1.25m.

For the third orientation, the unit vector normal to the loop surface of the

coil of wire pointing in the axial direction, we observe three maxima of .5,

1.375, and .5mV at -.234, .0, and .234m, respectively, with a useable space

domain of about 105cm.

Since we want to discriminate the signal from the magnet as much as

possible from the electromagnetic background noise and to disturb the magnetic

field of the dipole as little as possible, we must keep the number of loops

in the coil of wire and its radius as small as possible and select an orientation

which maximizes both the signal strength and the useable time of recording. Based

on the sensitivity analysis we picked out the third orientation with the

locp surface of the coil of wire pointing in the axial direction for our

sensors. By proper expansion of Eq. 4.27 we find, that for the previously

discussed third orientation the voltage induced in one loop at t=O is propor-

tional to the moment and the velocity of fhe dipole, to the square of the loop

radius, and to the negative third power of the ring radius.

(6.2) V a mv r2/R3

Since the maximum voltage is only in the mV range, we must amplify the siqnals

either by increasing -the number of loops in the coils of wire or by tihe use

of amplifiers or by applying both methods simullaneously to -e signal ranqo

of the magnetic tape recorder.

(6.3) Vmax/recorder " Vmax/ oop
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Vmax/recorder is the maximal voltage which can be recorded on the magnetic

tape, A is the gain of the amplifier, N is the number of loops in the coil

of wire, and V is the maximal voltage induced in one loop by themax/loop

bypassing magnetic dipole.

Based on the sensitivity analysis we established the design parameters

for the instrumentation. The analysis showed that we can use a simple parallel

coil arrangement for probing the moving magnetic dipole field and time-multi-

plexed recording of the signals. The block diagram of this parallel spin coil

switching method is shown in Fig. 12. In this configuration a sequential

series of coils of wire, one coil per station, is tied in parallel and feeds

a common amplifier. Since the signal which is induced at the coil of wire

by the by-passing magnetic dipole field is of sufficient amplitude as compared

to the signals coming from the adjacent stations and the cables are shielded

to avoid excessive pick up of extraneous signals, a single amplifier can be

used. Due to the temporal sequence in the measurement of the projectile

motion we can use d3tcl hannels for the recording of the electromagnetic pulses

which previously were employed to record data while the projectile traveled

in-bore. As the projectile exits the muzzle, we can use a sensor at the muzzle

to initiate a switching sequence which will remove the previous signal from the

input of the data amplifier and switch in the signals from the electromagnetic

radiation pick-up coils.

The number of electromagnetic pulse stations and their separation

distance basically depends on the precession, nutation and dispersion of ihe

roind fired and the required set of data.
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VII. CONCLUSION

We used the relations (6.3) and (6.2) together with the computed values

of Vmax/loop to establish the design parameter of an experimental prototype

having two stations each with only four sensors. We inserted a miniature

magnet in the nose of a 37mm projectile, fired it, and recorded the signals.

The unfiltered and superimposed signals from these four coils of wire at one

station are shown in Fig. 13. The recorded data were within the computed

.30• II

.20

0.0

-. 20I

TIME -MS

Figure 13. Unfiltered Data from a Stalion with Four Electromagnelic Pulse

Detectors.

envelope of the electromotive force and proved that the theoretically con-

ceived measurement technique is correct and can be applied to the obiainment

of continuous flight data in the intermediate ballistic and early free flight

regimes of projectiles.
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At the moment we are in the midst of building an electromagnetic pulse

instrumentation system consisting of eight stations, each having 12 coils of

wire which are arranged circumferential-ly and equally spaced in a ring con-

figuration. The equations for the computer evaluation oackage for determining

the projectile motion from the 12 variables of the magnet motion have been

derived and are currently being programmed. As soon as the instrumentation

is built, we will carry out an experimental firing program in which we

will concurrently record the motion of a medium caliber projectile with this

electronic recording technique and with the conventional photo flash method

in our transonic indoor range. From the recorded data we will then reduce

the position and velocity vector of the center of gravity of the projectile,

the spin, the precession and the nutation of the projectile axis as a function

of time and compare the two sets of data.

With the preliminary experimental validation of our theoretical concept

we have demonstrated that our proposed electromagnetic pulse instrumentation

and measurement technique is a very suitable means to electronically monitor

the motion of projectiles in the early free flight regime and to process

the recorded data quickly and automatically. We believe that this type of

instrumentation and measurement technique could become a standard tool for

monitoring the instantaneous position, orientation, linear velocity, and

angular velocity vector of a ballistic object or a succession of ballistic

objects moving in a nonmetallic medium as function of time.
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INTRODUCTION

A project is currently underway at General Electric to develop an

analytical method for more accurately predicting gun dynamic response.

In the initial stage of this project, only the effects of eccentric

firing, or mis-alignment, are being considered. This phenomenon of

unbalance is encountered in many automatic weapon designs when the

firing force is not in axial alignment with the center of gravity of

the recoiling parts. In such cases, during firing, dynamic pitching

and yawing moments are introduced, causing deformation and movement of

various weapon components. Dynamic behavior of this kind can seriously

affect firing precision.

As a part of the project, a special single shot device was built

to provide a basic understanding of the behavior of unbalanced systems.

The mis-alignment between firing force and the center of gravity of the

recoiling parts can be varied. An attempt was made in the design to mini-

mize dynamic effects other than eccentric loading. The apparatus has a

minimum of moving parts, and a very stiff barrel is used to avoid the

effects of droop. The support system, however, was designed to exhibit

nonlinear behavior typical of actual installations, for support loading

is an important consequence of eccentric firing.

A transient dynamic numerical analysis was used to calculate the

response of the test device. The analysis considered the non-linearities

in loading as well as those in the support structure. The weapon was

modelled as a series of concentrated masses and springs.
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Fire tests were conducted with the test fixture in different

configurations, having varying amounts of eccentricity. Some comparisons

have been made between the measurements and the dynamic simulation

pr edictions.

Work on this project is continuing, and this paper presents a

report of the progress to date.

SINGLE SHOT TEST FIXTURE

A sketch of the test fixture is shown in figure 1. It consists of a

30mm Mann ballistics barrel (with breech-block) which is held in position

by forward and aft supports. These supports are approximately 66 inches

apart, but this spacing is variable. An additional block is rigidly

attached at the mid-section of the barrel to provide an impact surface

for the recoil adapters. The basic design is such that the firing force

is nearly in axial alignment with the vertical center of gravity of the

recoiling mass. When the gun is fired, the barrel, breech-block and mid-

barrel attachment move rearward, sliding in the forward and aft support

blocks. Rearward motion is attenuated by the recoil adapters which are

contacted after 0.70 inches of free travel. Torsional moments from projec-

tile spin-up are reacted by a sliding joint at the forward support.

Each support block is held in place vertically by two pin-ended rods

which are connected to independent cantilevered plates. The support

stiffness can be varied by installing plates of different thickness.

A similar arrangement of tie-bars provides side support.
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The complete design is relatively stiff. Although the Mann barrel

is about 90 inches in length, it has a near constant outer diameter of

3.30 inches. Its weight, without the breech block, is 184 lbs. The

vertical supports each have a minimum stiffness of about 50000 lbs/in.

The total recoiling weight is 334 lbs.

To obtain an unbalanced system, additional weight (ballast), in the

form of thick steel plates, is bolted to the mid-section support block.

This becomes part of the recoiling mass and lowers the overall center of

gravity. With a maximum ballast of 87.5 lbs., the eccentricity between the

barrel center]line and the center of gravity becomes 1.42 inches.

MODEL AND ANALYSIS

The test device was modelled with a series of concentrated masses, beam

elements, and springs, as shown in figure 2. The stiffness of the beam

elements, joining the barrel masses, were calculated using finite element

I
theory. These values compared favorably with actual static test results.

The stiffness characteristics of the vertical supports, and the ballast

support beam were determined from static tests. These springs were non-

linear, showing different behavior in tension than in compression. They

also contained gaps from machining tolerances at mating surfaces and pin

connections. The total gap, or tolerance buildup, in each support linkage

was nearly .025 inches.
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The transient dynamic response of the lumped mass model was

performed using the linear acceleration time step integration 
method.2

A specific computer program was developed to generate stiffnesses and to

carry out the calculations. Two dimensional analysis was used as the

eccentricity occurs only in the vertical plane.

The chamber pressure variation with time was used as the forcing

function. The firing pulse was approximated with a series of straight

line segments.

The non-linear springs were included in the analysis along with

friction forces between the support blocks and the recoiling barrel.

Because the system was relatively stiff, no viscous damping was included

in the initial calculations.

FIRE TEST INSTRUMENTATION

During fire testing, instrumentation was provided for measuring

chamber pressure, support forces, axial displacement, barrel vertical

displacement, and muzzle pitching angle variation with time. A measure-

ment was also made to determine projectile exit time.

Strain gage bending bridges were applied to the cantilevered plates

to measure support forces, and to the recoil adapter support to measure

recoil forces. Strain gages recording hoop stress at the muzzle were

used to record projectile exit time. Axial movement was determined with

linear motion transducers.
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Two optical trackers were used to measure muzzle vertical motion

as well as pitching angle. One tracker was focused on the tip of the

muzzle and the other some 8 inches aft of that point. Both vertical

motions were recorded on magnetic tape. Later, the tape was played

back through an analog computer which combined the signals to produce

angular displacement. Although the recorded pitching angle is between

two separated points and not precisely at the muzzle, the results are

useful for comparison purposes.

COMPARISON OF TEST RESULTS WITH ANALYSIS

Test shots were fired with the fixture in different ballast configura-

tions, while measurements were recorded on oscillogTaph and magnetic tape.

The traces of support loads were compared with calculated values as one

means of checking the capabilities of the analysis.

The measured forward mount load variation with time is plotted in

figure 3 for the concentric configuration (in which no ballast was added),

and also for the configuration where maximum ballast was applied. Aft

support loads are plotted in figure 4. The effects of unbalance can be

clearly seen in both figures, By comparison, very little load develops

for the concentric case. Although, after the first 8 milliseconds, when

the recoil adapters contact the recoiling mass, a noticeable disturbance

in the support loads can be observed.

Curves of calculated loads for the maximum ballast condition are also

plotted in figures 3 and 4. The comparison with test results is encouraging

for a first attempt. The analysis seems to predict fairly closely the near
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zero load which occurs when the barrel traverses the gap, or dead-band,

in each support spring. The noticeable difference in curve shape between

test and analysis of the aft mount load, in the range from 14 to 24 milli-

seconds, is believed to be produced by rotation of the support block. Over

the time span, it can be observed that the area under the two curves is

about the same.

The disturbing feature in the comparison is the appearance of the

secondary frequency of about 800 hz which appears in the test data super-

imposed on the primary wave form. The two lowest natural frequencies in

the vertical direction, involving large support spring movement, were

calculated as 43 cps and 58 cps. These seem to bracket the main frequency

shown in the test data. The next three frequencies, which involve barrel

bending modes, were calculated to be 185, 561, and 960 cps. Since none

of these correspond to te obsetved high frequency, another approach was

taken.

The support systems were remodelled using four individual masses

rather than one, to determine if the measured effect might be due to

response within the supports themselves. A plot of the computed results

is shown in figure 5 along with the measured loading. A comparison of

these curves shows a closer agreement and the piesence of a high frequency

respcnse. Refined modelling and the inclusion of damping could un-

doubtedly improve the correlation, but one questions the need for closely

reproducing such a high frequency in rhe support structure itself.
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Calculations of recoil motion were also compared with test data.

The results are plotted in figure 6. Agreement could be improved with

a more detailed consideration in the analysis of friction between the

projectile and the barrel, and that between the powder gas and barrel.
3

These effects have been included in the analysis, but only as a linear

function of chamber pressure.

It is interesting to consider the motion of the test apparatus prior

to projectile exit. The calculated deformed shape of the barrel is plotted

at four different time intervals in figure 7. Although the primary motion

of the stiff structure is rigid body pitching, there also is evidence of

transverse bending. This effect would, of course, be significantly greater

with a more flexible barrel.

Plots of the calculated vertical displacements of the two end nodes

are given in figure 8. Optical tracker test measurements are also shown.

The analytical predictions seem to be drastically in error at the time of

projectile exit. Although the displacement measurements were taken some

weeks after the load data was obtained, and with a re-assembled test fixture,

a consistency would be expected. It can be noted that the peak upward load

at the forward mount (see figure 3) occurred around 10 milliseconds, at the

same time the peak vertical displacements occurred. This tends to give

credibility to the test data and makes the analysis questionable for the

stiff system. Although very small movements are involved, the analysis

predicts opposite displacement and pitching angle from test results at

exit time. There appears to be a lag in response which is not included

in the analysis.
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Similar single shot tests have been conducted with a lightweight

barrel having much greater flexibility than that of the Mann barrel.

Fire testing resulted in much greater motion at the muzzle. Optical

trackers were focused some 5 inches apart near the muzzle to measure

the pitching angle. A plot of the results is shown in figure 9 along

with analytical predictions. The measured pitching angle at time of

projectile exit was .008 radians. The test was repeated several times

and targets were taken. All shots hit the target (1000 inches) between

7 and 9 inches below boresight.

The calculated displacements agree somewhat better for the flexible

system. However, it is still not known from testing such an arrangement,

whether the analysis is in error, or whether barrel droop, or some ocher

effects are iesponsible for the disagreement between test and prediction.

DISCUSSION

An attempt has been made to isolate the effects of eccentric firing

with a simple single shot test device in a fundamental investigation. In

this study, both analytical and test results have shown the apparatus to

display a highly complex behavior when fired. An extrapolation from the

fundamental test results substantiates what is presently surmised about

eccentric firing of production precision gun weapons, including single

barrel, multi-barrel, and rotating barrel cluster weapons.

Eccentric firing has an effect on gun dynamic response, which directly

or indirectly, can influence weapon accuracy. Firing with an unbalanced
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recoiling mass will result in muzzle tipping at the time of projectile

exit, even if the gun has infinitely stiff transverse supports. Not

only does the tipping affect initial yaw, but a transverse velocity is

also imparted to the projectile. The transverse loads, developed from

the unbalanced system: deflect the supporting structure to produce a

further pitching of the barrel. In turret applications, the transverse

loads developed from eccentric firing can be expected to influence servo

load torques.

It can be argued that no real inaccuracy is developed from eccentric

firing if each shot, although several mils from boresight, passes through

the same hole, or is a mil or so from point of impact. However, the

problem arises in automatic weapons when slight variations in action occur

with repeated shots. The starting position may be different, the round

impulse may vary, or the recoil adapter may behave abnormally. The result

of slight mis-timing may be observed from figure 9. A delay of 0.1 milli-

second could, in this case, produce a 2 or 3 mil difference in initial

heading of the projectile.

From the z esults obtained thus far, it appears that the lumped mass

method of analysis might be used satisfactorily for the prediction of

support load variation with time. And also, it should be suitable for

determining servo load torques in turret applications. However, its

suitability for predicting muzzle tipping is still in doubt, and a

continuation of the project is planned to resolve this question.
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I. INTRODUCT ION

A. BACKGROUND

In the early sixties, at the Ballistic Research Laboratory (B.R ,.),

Messrs. Stanley S. Lentz and Richard B. Kirkendall developed an instrumentation

system to measure the off-axial in-bore motion of medium to large caliber

projectiles. An optical lever system was used with a carbon arc lamp as a

light source and a displacement time camera to record the motion. They faced

four major problems in this effort: (1) Due to the white light source the

system had to be used at night to prevent the sunlight from fogging the film;

(2) It was difficult to time the shutter to record full in-bore travel but

close the shutter prior to muzzle flash; (3) Conventional metal rotating

bands failed to obturate sufficiently allowing blow-by which obscured the

light beam; (4) Film records required optical reading which is time

consuming and cost ineffective. To overcome the ambient light and muzzle

flash problems, a laser was substituted for the carbon arc lamp and a narrow

band filter was placed in front of the camera. The 37mm, 90mm, and 105mm

systems were studied with this instrument. The results were encouraging.

Records of the complete in-bore travel were obtained with specially designed

non-metallic rotating bands. But because of a shortage of funds and higher

priorities of other projects this project has been dormant for several years.
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.B. CURRENT EFFORTS

New technology has made it possible to improve the technique for recording

angular projectile motion. By using a continuous position sensing photo-

diode and electronic signal conditioning, the photographic film recording

can be eliminated. The data can be recorded directly on magnetic tape along

with pressure, force, displacement, strain, temperature, and other measurements

made on a gun system; thus, all recorded data will have a common time scale.

It is hoped that plastic rotating bands will improve obturation during the

entire launch cycle, thus reducing the obscuration of the laser beam.

II. EQUIPMENT

A. THE OPTICAL SYSTEM:

The optical system as used at the BRL is shown in Figure 1. It-represents

a simple optical lever. A laser source is used in conjunction with a spatial

filter, a large collimat-ing mirror, and a photodiode for a detector.
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B. THE LASER

We have two lasers available: a fie Ne laser with a lSmW output at a wave-

length of 632.8nm, and an Argon laser with a total rated output of 2 W able

to selectively emit any one of nine discrete wavelengths from 454.Snm to

514.5nm. The laser light source supplies us with a convenient, powerful

source of useable light and the monochromatic nature of the beam allows us

to use filters in front of the detector to screen the ambient light.

C. THE SPATIAL FILTER

The laser generates a beam which first pas3es through a spatial filter

which smooths and diverges the beam. The spat-ial filter consists of a

focusing lens and a pinhole. The pinhole is placed at the focal point of

the lens. The diameter of the pinhole is determined by the focal length of

the lens. The shorter the focal length the smaller the pinhole can be. If

the pinhole is too large, the beam is not smoothed, and if the pinhole is too

small it creates a diffraction pattern. A typical pinhole size is 100 Um with

a 100mm lens.

D. THE BEAM SNLITTER

After the beam exits the spatia'l filter, it passes through a beam splitter,

where it is divided into two linearly polarized beams. The beam which passes

through the splitter is retained. The other beam is discarded. Originally a

specially coated 'thick plate glass mirror and beam splitter device was used,

but because of its thickness it suffered from internal reflections. Therefore,
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a pellicle beam splitter is now employed. It is basically a very thin membrane

and eliminates the double image caused by internal reflections. Pellicle beam

splitters can be coated for various reflection to transmission ratios for

specific wavelengths. For our purpose a 50/50 ratio is appropriate.

E. THE PARABOLOIDAL MIRROR

The main optical element of the lever is a 254mm diameter, front-surfaced,

off-axis, paraboloidal mirror with a focal length of 1.22 m. The mirror is

placed so that its focal point falls on the pinhole, thus collimating the

laser beam. The diameter of the collimated beam depends on the focal length

of the focusing lens. The shorter the focal length the larger the beam

diameter. As shown in Eq. (1), the gain of the optical lever system is

determined by the focal length of the paraboloidal mirror.

(1) D "n,
1600

where

D displacement on the detector in mm.

cX angular projectile displacement in mils

9. focal length of the mirror in mm.

Eq (1) yields a 2.40 mm/mil gain with our mirror.

This large front-surfaced mirror is an off-axis paraboloid to allow the

reflection of the light beam without introducing distortion. From this mirror

the beam is directed to a front-surfaced plate mirror which is positioned along

the gun axis, and directs the beam down the gun tube towards the projectile.

The projectile has a mirror attached to its nose to initiate the beam's return

path.
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F. TIlE PIIOTODIODE

The information concerning angular motion of the projectile is contained

in the angular deviations of the returning beam; however, no information about

projectile displacement is contained in the beam due to its collimated nature.

The paraboloidal mirror focuses the returning beam on the photodiode by means

of the beam splitter. The diode is a continuous position sensing photodetector

with an output proportional to the image position and intensity.

Figure 2 sketches the physical appearance of the diode and lists some of

the specifications. The detector is sensitive to sue.°a a .'road spectrum that

it must be shielded from external light sources by an appropriate filter.

Also the intensity of the incoming beam must be controlled to prevent damage

to the detector. The diode can withstand 0.4 mW/mm2 but operates more

2
linearly at 0.2 mW/mm

11. DATA ACQUISITION AND REDUCTION

A. SIGNAL CONDITIONING

Figure 3 shows an equivalent circuit for the detector and the initial

amplifier. The output current from each ax-is of the detector is the input

to a sum and difference amplifier. The difference terms, Xd and Yd' contain

position and incident power information. The ratio of resistances varies

with the image position, while the term Is is determined by the total incident

power. If the two sum outputs, Xs and Ys are added, the result is a term

proportional to the total current. It is obvious from this that dividing

the individual difference terms by the total current removes the dependence on

intensity variations. The resulting two ratios, Xout and Yout' are determined

by position only.
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Figure 4 shows the results of varying the incident power level while

maintaininga constant position. It is a plot of X out versus (Xs + Ys
) ,

which is the total current from the diode and represents the intensity of the

incident beam. The curve shows that large drops of intensity, greater than

75%, will cause a very small shift in the output, less than 10%.

B. CALIBRATION AND DATA REDUCTION

Extensive work has been completed to determine the best operating

conditions for the diode and to provide a suitable technique for calibrating

the output. It was determined that excessive power density can cause the

output to drift. Figure S is a plot of the X out vs. Y out resulting from

tracing a circle with a radius of 8 mm on the face of the detector with a

laser beam of excessive power density. The drift is immediately apparent.

By reducing the incident power density and shielding the diode from the ambient

Light, Lt was possible to eliminate the drift and to a large extent the noise

too. The improved results can be seen in Figure 6. Shown in this plot are

the results of tracing three circles on the detector with radii of' S, 10 and

15mm. Notice that the drift has disappeared; however, non-linearities are

apparent in the larger circles.

It has been determined that the final outputs have a one-to-one relation-

ship with the coordinates of the image position on the detector. The approach

chosen for the data reduction is to fit a least squares circle to each set of

data shown in Figure 6, subtract the circle, and perform a Fourier analysis

on the residue. It is anticipated that the residue can be reduced to a cosine

function with an amplitude controlled by the radial displacement of the

incident beam and with a period of ir/2. Once a mapping of the data is

completed, an inverse transformation will be performed to predict the polar

coordinates of the beam from the recorded data voltages.
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IV. RESULTS AND CURRENT EFFORT

Preliminary firing was done to show that indeed it is possible to make

projectile in-bore measurements with an optical lever and photodiode detector

instrumentation system. These firings were done with 37mm projectiles with

conventional copper rotating bands. The results were encouraging, although

obturation was somewhat of a problem. As mentioned in Section 1, B, it is

hoped that the use of plastic rotating bands will improve obturation and hence

the obscuring and diffusion of the laser beam.

Once the calibration and the data reduction package are completed, it is

felt that this system can provide analog measurements of transverse projectile

in-bore motion of sufficient accuracy to evaluate computer code predictions

and to investigate the dynamic traction history between projectile and tube.

If this system is used in conjunction with an interferometer, the friction

effects due to balloting can be evaluated. By taking advantage of the

polarized nature of the light source, we hope to be able to retrieve information

about in-bore projectile spin rate in a future effort. This would allow the

evaluation of slippage of the rotatingband and between a sabot and its

subprojectile.

The same optical lever arm technique can be applied to the measurement

of barrel motion. Barrel motion during the in-bore cycle must be known in

order to correctly evaluate the in-bore motion of the projectile as these two

are superimposed on any measurement made on the projectile. Accelerometers

can also be used to determine barrel position during the firing cycle.
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It is apparent that once the data reduction techniques are established

that this instrumentation system will have many potential applications. There

has been a continuing effort in the Propulsion Division of the Ballistic

Research Laboratory to develop new instrumentation techniques for solving

current and anticipated problems. The ability to measure the total in-bore

projectile motion and the muzzle motion during the propulsion and launch cycle

is an absolute requirement for studying system accuracy and the parameters

that affect it.
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Abstract

A preliminary comparison is made between a conventional feed-

back-control, deterministic optimal control and stochastic optimal

control for a helicopter gun turret. Stochastic command input

and measurement noise is assumed in all cases, and the relevant

variances and loss functions are compared. The conventional

system with two states observed is found to be extremely sensi-

tive to measurement noise, while the deterministic optimal

controller with four measured states is found to be markedly

less sensitive. Use of a particular Kalman filter further

considerably reduces this sensitivity, while maintaining good

response to the command disturbances. The advent of micro-

processors should make such a system feasible, suggesting a

deeper examination of the potential of stochastic optimal and

sub-optimal control.
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1. Introduction

This paper considers the control of a helicopter gun

turret in response to gunner or other input.

The control of weapon systems in conventional heli-

copters and ground vehicles is based on simple classical

feedback concepts. This has been appropriate, since imple-

mentation of modern optimal control theory with a limited

number of measurement transducers would have required more

complicated analog electronics than likely would have been

cost effective. The advent of small and inexpensive micro-

processors, however, portends a major change in the complexity

which can be justified in controllers, suggesting a reexamina-

tion of the strategy used in the control of weapon systems.

Compensation for measurement errors is a key concept

in stochastic optimal control theory. Such errors get

amplified greatly in high-gain feedback loops, often

causing a control variable to saturate and sometimes causing

excessive noise at the output. The problem becomes more severe

when some of the state variables are not measured directly.

In practice, direct measurement of only a small proportion of

the state variables can be justified, and the others must be

fabricated by dynamic processing of the measured variables.

A complete state vector must be deduced, nevertheless, for

either deterministic or stochastic optimal control theory to
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apply. Small measurement errors can be magnified many times

in this deduction, especially if differentiation is involved.

In addition, the model of the system needed in the processing

inevitably contains errors which also tend to produce errors

in the deduced state variables.

These errors are recognized by assuming direct contami-

nation of the actual measurements by stochastic, usually

white, noise. The Kalman filter idea then in effect weighs

several successive measurements to secure a best estimate

of the current state. Failure to introduce this noise can lead

to serious problems in practice that would not likely show

up in a simulation of the system that omits measurement noise

and assumes a perfect model.

The relevant stochastic control theory also represents

disturbances as having a stochastic nature (although determin-

istic inputs also can be used in a certain way). The spectrum

of the stochastic input can be colored to represent the actual

expected input, and the estimation and control logic is auto-

matically modified in recognition of this spectrum. Theoretically,

a deterministic input is incompatible with optimal control if

the design is intended to be optimal for more than that particular

input. Practically, stochastic inputs are at least as meaningful,

and in the cases of wind gusts, for example, are likely to be

more meaningful.
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Loh [1] gives an eighth-order model of a conventional

system which uses position and tachometer feedback. The

latter involves a derivative-type filter for stability. This

is then removed, leaving a seventh-order system, and an optimal

feedback control is postulated using a quadratic performance

index which weights the servo error, the command input and

the servo drive voltage. A sieoge control input is assumed,

and the entire state vector is assumed to be measured without

error. In Kasten et al. [2] the same system is considered, but

the measurement of two of the state variables is replaced by a

Luenberger observer, with little degradation of performance.

The introductory study presented herein comprises the

following steps: simplification of the model, stochastic

modeling of the input,insertion of measurement noise, compari-

son of the three system types, and recommendations for further

work. The basic concepts for stochastic models and control

are not referenced, since they are widely discussed in text-

books.

2. Simplification of the Model

The basic system model (not including a filter in the tachometer

feedback path) used by Loh and Kasten et al. is of seventh order, with

the eigenvalues spread over a bandwidth in excess of one-thousand to

one. It seems reasonable to excise three very fast roots; to

include them at an early stage gives a misleadingly complex con-

trol system. The model was thus simplified to fourth order, shown

as part of the signal flow graph of Fig. 1. The (colored stochastic)
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input is x5 ' the output is xI, and x is the error. The fre-

quency responses of the original and simplified systems are

shown in Figs. 2 and 3, respectively.

3. Stochastic Modeling of the Input

A model for the stochastic input has been chosen by starting

with the triple-ramp of Fig. 4a, which has the spectral content

(Fourier transform) shown in Fig. 4b. This seems to represent

the sort of motion the gunner might need, but of course the

zeroes at WT = nit, n = 1,2,---, are not realistic. A filter

which gives roughly the same decay as w increases, without

these zeroes, is given by

H(s) = 2f3/2 ; f = 1.229/r

s2+2fs+f 2

The numerator is chosen so that when unity Gaussian white

noise (autocorrelation 6(t)) is inserted into the filter, using

= 1 second, the variance of the output is unity:

1 J- H(s)H(-s)ds = 1variance of output 1 f2 -ss

2 -j.

A plot of the function IH(jw)l, scaled to match the zero-

frequency value of the triple-ramp characteristic, is also

shown in Fig. 4b. This is the square root of the power density

spectrum. The resulting second-order filter is shown in Fig. 1,

with w as its input and x as its output.
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Substitution df square-waves for the triple-ramp would

give a first-order rather than a second-order filter, and

perhaps should be used also. The H(s) given above is used

exclusively in what follows, nevertheless.

White noise which is very nearly Gaussian can be generated

by superimposing just a few random numbers which are uniformly

distributed over the same range. (The difference between the

probability distribution for the sums of only four such numbers

and the Gaussian distribution never exceeds 3.6% of the maximum

value, for example.) A simulation of the conventional heli-

copter system (tenth order system, including two orders for

the stochastic input-filter and one order for the tachometer

feedback) is shown in Fig. 5.

4. Measurement Noise

A white noise e4 is superimposed on the tachometer signal, and

a white noise eI in the position feedback, as shown in Fig. 1.

Similar white noises are also superimposed on all the measurements

of the other two systems. Since all inputs are independent,

the variance of any variable is the sum of the variances pro-

duced by the individual inputs.

To make a comparison between the systems, it is necessary

to choose the magnitudes of the white noise inputs. The tenta-

tive assumption made is that each measurement of xl,---,x 4
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is contaminated by a noise which has 1% of the variance of the

measurement were there no noise present. (These noises then

are not exceptionally small, since their standard deviations

•are 100% of those for the signals.)

The- variance of white noise is infini-ty, but in fact the

hi'gher frequencies contribute little to any of the state vari-

ables, and especially the output which is of key interest,

because ,of the filtering action of the system. A bandwidth

of the system, bo , can be defined so that, for the system .with

x5 or e1 as the input ard x, as the output, which has unity

D.C. gain, the variance of the output response to the unbanded

white noise input equals the variance of the white noise input

over the bandwidth:

bo = var (x1 ) for unity white noise input e, = 18.54 s

The white noises e4 and e1 then are chosen to have i'e same

variance, over the bandwidth bo, that x4 and xl, respectively,

have over the infinite bandwidth. These are given in the third

column of Table 1.

The deterministic control system (but with stochastic

inputs, or course) is shown in Fig. 6. Every state variable

(Xl, x2, x3, x4 ) and the input (x5) is assumed to be measured;

the sixth variable (x6 ) is discussed below. The bandwidth of

this system is 66.95 radians/sec., computed with the appro-

priate causalities inverted so the path h46 is included. The
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resulting amplitudes of the white measurement noises el,e 2,e3,e4

are shown in the fifth column of Table 1.

The stochastic optimal control system is shown in Fig. 7.

The state variables (xl , x2, x3, x4 ) and the input (x ) are

assumed to be measured. The same values of the amplitudes of

the white noises el,---,e 4 were used as deduced for the deter-

ministic optimal control system. This seems reasonable in view

of the similarity of the respective variances of xl,--,x 5 ,

and precluded an iterative procedure. To derive the Kalman

filter, some value for the amplitude of the white noise e5

must also be assumed. In this special case the variance over

the bandwidth of 66.95 s was chosen at the very small value

3f 0.01% of the variance of x5; the result is the bottom entry of

the fifth column of Table 1.

The variances of x and any of the state variables can be
0

computed directly, without simulation, from the transfer functions

between a white noise input and the output of interest. The

transfer function of interest is substituted for H(s) in the

integral given in Section 3 above. General results are given

for up to tenth-order systems by Newton et al, [3], and a

Fortran algorithm is given by Astro5m [4], who also gives an

equivalent algorithm for discrete-time systems. The transfer

functions were computed in polynomial form from the state

variable formulation using the NASA-Dryden program CONTROL pre-

sented by Edwards [5].
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5. Comparison of the System Types

Optimal control minimizes a loss. function or performance

index. The index used by Loh, when transformed to the reduced

order system, gives virtually (O.Olu 2+2Ox2 )dt. This is assumed

herein, also. The relevant backward matrix Ricatti equation

gives six relevant feedback coefficients: four from the state

variables, one from the effective excitation of the system,

x5, and one from inside the stochastic filter, x In a Kalman

filter these six states are estimated, using a sixth order model

with inputs from whichever of the variables xl,...,x 5 (but certainly

not x6 ) are deemed measurable, despite contamination with measure-

ment noise.

In the deterministic optimal system, the state x6 would

have to be fabricated, for example with a Luenberger observer.

For the first of two schemes a perfect observation is assumed,

which is theoretically possible if measurement noise is dis-

counted. It should be recognized that this gives an unrealistic

advantage to the system, however. For the second scheme, dis-

cussed below, a Kalman-type filter limited to the variables

x5 and x6 is employed.

The stochastic optimal control system with complete Kalman

filter is given by the vector equations

u = BG x

x = K[c(x-x) + e(t)] + Ax + u

x = Ax + u+ B ww

K = MC Tv-6
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For the purposes of simulation this is better recast as

Et A-BG B, Co x[: r ]
Ld i = BG+ [B§KW

dt 0 -- - KC LBww-Ke]

x = X-X

in which

0 1 0 0 0 0

-b -a b 0 0 0

0 0 0 c 0 0
A=

e 0 -e -d 0 0

0 0 0 0 -f 1

0 0 0 0 0 -f

0 0 0 0 0

BG =g 0 0 0 0 0 0

0 0 0 0 0 0

h1 h2 h3 4h4 4 5h4 6

0 0 0 0 0 0

0 0 0 0 0 0
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M11/V1 M1 ?/V- M1 5/V 5  0

M12/V1

KC =

M16 /V1 - - - -- - - - - - - - - -  M5 6/V5  0

B = [ 0 0 0 z 0 y] ; wt  = [wj w2]; z = 117.4

The non-controller part of the system differs from the

usual textbook system in that it is divided into two parts,

the input filter and the turret system proper. The turret

system part is not excited by anything except the output of

the controller, and is replicated in the Kalman filter.

For the moment assume w2 is zero. If the system is

started with x x, the ideal controller has mij = 0 for

all i < 4, j < 4. This follows mathematically since then

x = x for all time, and the measurement erros have no conse-

quence since, in effect, no measurements are made anyway.

If the system is started with x x, the ideal controller

starts with mi j equaling the covariance matrix of the initial

state, and subsequently relaxes asymptotically toward zero.
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The Kalman filter for the stochastic filter part of the

system makes x5 reproduce x5 increasingly well as V5 is reduced

and m55, m66 and m56 increased. The limit of zero V5 and

infinite m55 , m 6 6 and m5 6 gives x5 = x5 and x6 = x6. Since

V5 was neglected in evaluating the conventional and the first

version of the deterministic optimal control system, and in

view of the preceding paragraph, the ideal stochastic optimal

control system gives the same variances for x and u with0

measurement noise as the deterministic optimal control system

gives without measurement noise. This ideal result compares

very favorably, but of course is suspect for practical

implementation of a real system.

A real system is of infinite order, and its characteristics

vary with temperature, wear, etc. The model built into the

Kalman filter is not exact, consequently, and its response

inevitably differs somewhat from the system it attempts to

represent. In addition, the real system is subjected to

small disturbances which are not directly felt by the Kalman

filter, causing additional filter divergence. The practical

result of these differences is that the mathematically ideal

behavior must be relaxed to permit measurements of the state

vector to be felt by the Kalman filter, but not so much that

the measuremen noise has any more deliterious effect than

necessary.
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Carrying this out represents the art of the linear

quadratic stochastic optimal control problem. Athans [6]

gives a practical description of the trade-offs involved.

The concept of system sensitivity becomes extremely impor-

tant.

To demonstrate a simple technique we superimpose white

noise onto the control vari'able u, as represented in Fig. 7

by w2 . This noise could be thought of as a substitute for

parameter errors, as well as its more direct interpretation.

Fol.lowing an approach similar to those for the other control

systems, we let the variance of this noise, over the bandwidth

b° = 66.95 rad/sec., equal 1% of the variance of u without this

noise. Therefore, if w2 is unity white noise,
2$

z = O.01 * .77 = 0.02936
4000 V 66.95

The resulting steady-state values of the matrix M are

_5 5 5 -5
8.2523*10 6.2396*10 ~  8.2474*10 3.8424*10 0 0

_5 3 _5 _
6.2396*10 2.8203*10" 6.3259*10 5.1088*10 0 0

5 5 5 .2
8.2474*10 6.3259*10- 8.2488*10- 3.8963*10 0 0

0 2 2 _2
3.8424*10 5.1088*10 3.8963*10- 4.4857*10 0 0

5 _
00 0 9.6121"0 3.2102*10

0, 0 0 03.2102*10-3 2.1443*10
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The zero elements in the matrix result from the

decoupling between the two parts of the system. The values

for m35, m 56 and m66 follow from the value of V5 discussed

earlier, and cause the contri-butions to the variances of x

and u to increase from their ideal values.

The second scheme for the deterministic optimal controller

employs that part of the Kalman filter which uses m5 5, m56,

and m66. Now, since e5 can be incorporated, a meaningful

comparison can be made with the stochastic optimal control

system.

To compare the various systems objectively it is necessary

to find the contributions to the variance of u from the relevant

noises e. ...... e 5  This can be doen in straightforward fashion

for the stochastic optimal control system, but these contribu-

tions are infinite in other cases. To achieve meaningful re-

sults in these cases the noises are assumed to be band-limited

with bandwidth b , and the loops not touched by the path0

from the input to the output were not considered. This

approximation is the same, for all except the response of the

conventional system to e4, as 1% of the relevant variance xl---,x

found for the input w, multiplied by the square of the gun

from the relevant noise input to the output, u. The path from
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- -_ ___ . -mum w.

e to u on the conventional system has some dynamics, and conse-

quently was computed by integrating the appropriate integral

of the form given in Section 3 over the finite limits -bo to

+bo •

The signal w2 also is inserted in similar fashion in

all cases, to permit a more realistic comparison.

The overall results for the three systems are compared in

Table 2. The conventional system is seen to be quite unacceptable

for the noise amplitudes assumed. The measurement of the output

position is multiplied by so large a loop gain that the

greatly amplified measurement noise saturates the actual power

amplifier most of the time. The model neglects this saturation,

and predicts a rather large output variance due to the noise.

The noise e4 in the tachometer measurement produces a contri-

bution to the variance of u which would be modestly significant

were it not greatly overshadowed by the effect of eI. Its

effect on the variance of x is almost negligible. These

effects of -e4 are relatively small because the feedback gain

is relatively small.

The first version of the deterministic optimal control

system assumes perfect knowledge of x6 , which is unrealistic.

This system displays vastly less sensitivity to the measure-

ment noise, both in the control and output error variables.

This improvement presumably follows not so much from the use

of the criterion for optimality as from the use of four instead
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of two measurements for feedback. The-greatest source of noise

on both the output error and the control variable is on the

measurement of x3, a shaft angle. Note also that if measure-

ment noise is neglected altogether, this system produces about

half of the error variance as the conventional system, with

about the same amplitude of the control variable.

The second version of the deterministic optimal control

does not assume knowledge of x6, but uses x5 contaminated by
A

noise e5 as the input to an optimal observer to give x5 and

x6 as approximations of x5 and x6, respectively. The per-

formance of this more realistic model is consequently inferior

to that of the first version, but is still greatly superior

to the conventional system and is the proper basis of com-

parison for the stochastic optimal control system, which has

an identical observer for x5 and x6.

The stochastic optimal control system is seen to improve

its performance, as defined by the loss function, by reducing

and balancing the sensitivities of u and xo to the various

measurement noises. It does this at the expense of a modest

increase in the variance of x when no noise is present.
0

An additional noise of significant magnitude could be

inserted into the middle of the stochastic filter (at the x

junction) to represent errors in the stochastic filter model

itself. This would appropriately reduce the significance of

x6 .
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Stochastic optimal control appears to offer a significant

potential for improvement in the precision of helicopter gun

turrets and other weapons systems. But this sophisticated tool +

cannot reliably be applied in a disjoint manner; the uncertain-

ties in the structure, parameters and the noise levels should

be studied carefully, in concert with a sensitivity study of

the system.

6. Recommendations for Further Work

The amplitudes of the noise in actual measurements and

the spectral characteristics of real input disturbances should

be examined much more carefully, and the calculations repeated

in consequence. The system model then should be returned to

seventh order, with no corresponding change in the controller,

to assure that what becomes literally a sub-optimal controller

does not produce serious filter divergence. A sensitivity study

in which errors are assumed in the parameters of the system or

the filter also is highly recommended, since an overly sensitive

optimal control system can be distinctly inferior to a distinctly

sub-optimal but insensitive control system.

Measurement of fewer than four state variables likely would

be advantageous. It also may become advantageous to assume

perfect measurement of one.or more state variables, and con-

sequently reduce the order of the Kalman filter. Asher and Reeves

[7] give equations based on covariance analysis techniques which

allow the evaluation of filters of reduced state.
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Practical servomotors are rate-limited, and the amplifiers

which drive them saturate. Linear control theory is forced to

recognize these nonlinearities by penalizing large control-

signals so heavily that saturation rarely occurs. This is an

artificial penalty, however; quicker response to small

disturbances typically results from permitting saturation

to occur frequently.

A suggested method for accommodating nonlinearities approx-

imately into a stochastic optimization procedure is through the

use of random-input describing functions (RIDF's). Taylor et al

[8] give a list of recent references. The general approach is

discussed by Gelb [9] and by Atherton [10], who includes combination

deterministic-random describing functions and discussions of

alternate methods.

Microprocessor implementation of a Kalman-type filter operates

in the discrete time mode, and use of discrete-time algorithms

for the Kalman filter is more accurate than use of algorithms

which simply approximate the continuous-time algorithms. Use

of the Kalman pre-filter of Womble and Potter [11] also may permit

a much longer At without excessive degradation of performance.

The optimum At is a key question.

The overall results can be examined by simulations, including

both deterministic and random disturbances. Some comparison with

the measured behavior of an actual system is highly desirable.

701



The helicopter turrent system interacts intimately with

its surroundings, particula.rly. for burst firing. Any comprehen-

sive investigation must account for known or measurable periodic

disturbances and, most importantly, the overall dynamics of the

helicopter particularly in response to recoil forces.
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Texarkana, TX 75501

Commander
US Army Tropic Test Center
ATTN: STETC-MO-A (Technical Library)
APO New York 09827

Commander
Anniston Army Depot
ATTN: DRXAN-DM
Anniston, AL 36201

Commander
Corpus Christi Army Depot
ATTN: DRXAD-EFT
Corpus Christi, TX 78419 1

Commander
Fort Wingate Depot Activity
ATTN: DRXFW-M
Gallup, NM 87301 1

Commander
Letterkenny Army Depot
ATTN: DRXLE-M 1

DRXLE-MM 1
Chambersburg, PA 17201

Commander
Lexington-Blue Grass Army Depot
ATTN: DRXLX-SE-T
Lexington, KY 40507
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Commander
New Cumberland Army Depot
ATTN: DRSAR-ISS-A
New Cumberland, PA 17070

Commander
Pueblo Army Depot
ATTN: DRXPU-ME

DRXPU-SE
Pueblo, CO 81001

Commander
Red -River Army Depot
ATTN: DRXRR-MM
Texarkana, TX 75501

Commander
Sacramento Army Depot
ATTN: DRXSA-MME-LB
Sacramento, CA 95813

Commander
Seneca Army Depot
ATTN: DRXSE-SE
Romulus, NY 14541

Commander
Sharpe Army Depot
ATTN: DRXSH-SO

DRXSH-M
Lathrop, CA 95330

Commander
Sierra Army Depot
ATTN: DRXSI-DQ
Herlong, CA 96113

Commander
Tobyhanna Army Depot
ATTN: DRXTO-ME-B
Tobyhanna, PA 18466
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Commander
Tooele Army Depot
ATTN: DRXTE-SEN 1

DRXTE-EMD 1
Tooele, UT 84074

Commander
Badger Army Ammunition Plant
Baraboo, WI 53913

Commander
Holston Army Ammunition Plant
Kingsport, TN 37660 1

Commander
Indiana Army Ammunition Plant
Charleston, IN 47111

Commander
Iowa Army Ammunition Plant
Burlington, IA 52602 1

Commander
Joliet Army Ammunition Plant
Joliet, IL 60434

Commander
Lone Star Army Ammunition Plant

Texarkana, TX 75501

Commander
Louisiana Army Ammunition Plant
P. 0. Box 30058
Shreveport, LA 71161 1

Commander
Milan Army Ammunition Plant
Milan, TN 38358

Commander
Newport Army Ammunition Plant
Newport, IN 47966 1

Commander
Radford Army Ammunition Plant
Radford, VI 24141 1
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Commander
Ravenna Army Ammunition Plant
Ravenna, OH 44266

Commander
Riverbank Army Ammunition Plant
Riverbank, CA 95367

Commander
Scranton Aimy Ammunition Plant
Scranton, PA 18501

Commander
Sunflower Army Ammunition Plant
Lawrence, KS 66044

Commander
Twin Cities Army Ammunition Plant
New Brighton, MN 55112

Commander
Volunteer Army Ammunition Plant
ATTN: SARVO-T
P. 0. Box 6008
Chattanooga, TN 37401

C. Department of the Navy

Officer in Charge
US Navy Materiel Industrial Resources Office
ATTN: Code 227
Philadelphia, PA 19112

D. Department of the Air Force

Commander
Air Force Materials Laboratory
ATTN: LTE

LTM
LTN

Dayton, OH 45433
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E. Conference Particiyants with addresses

Director
US Army Air Mobility Laboratory
ATTN: SAVDL-AS (Mr. William L. Andre)
Ames Research Center 207-5
Moffett Field, CA 94035

Commander
US Army Armament Mate-riel Readiness Comrand
ATTN: DRSAR-ASI (Mr. George T. Balunis, Jr.)
Rock Island, IL 61201

Mr. C. M. Christensen
Code 523
Naval Ordnance Station
Indian Head, MD 20640

Mr. P. A. Cox
Southwest Research Institute
8500 Culebra Road
San Antonio, TX 78216

Mr. John Domen
Picatinny Arsenal
Bldg 62, ATTN: SARPA-QA-X
Dover, NJ 07801

Mr. Herman P. Gay
844 Aldino-Stepney Road
Aberdeen, MD 21001

SSgt Willie J. Hall, Jr.
465-76-5052
Development Center F/PR Division
Quantico, VA 22134

Mr. Michael Halter
Battelle-Northwest
3000 Area - EDL B].d.
Battelle Blvd.
Richland, WA 99352

Dr. William Holm
Radar Appl. Division
Engineering Experiment Station
Georgia Tech.
Atlanta, GA 30332
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Mr. John C. Houston
ARES, Inc.
P. 0. Box 459
Port Clinton, OH 43452

Mr. Robert Kasten
Rock Island Arsenal
ATTN: SARRI-EN
Rock Island, IL 61201

Mr. Bertram Kramer
Hughes Helicopters
Centinela at Teale Street
Culver City, CA 90230

Mr. John R. Masley
Picatinny Arsenal
Bldg 65, ATTN: SARPA-ND-C-C
Dover, NJ 07801

Mr. William J. Pryor
Picatinny Arsenal
ATTN: SARPA-AD-E-A
Dover, NJ 07801

Mr. George E. Reis
Division 1331
Sandia Laboratories
Albuquerque, NM 87115

Commander
US Army Aviation Systems Command
ATTN: DRSAV-EW9 (Mr. Dan Sabo)
12th and Spruce Streets
St. Louis, MO 63166

Dr. Martin Soifer
S & D Dynamics, Inc.
755 New York Avenue
Huntington, Long Island, NY 11743

Mr. Anthony J. Suchocki
Chrysler Defense, Department 711.1
C/Mz3 435-01-46
6000 E. 17 Mile Road
Sterling Heights, MI 48078
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Mr. Dean S. Williams
Ford Aerospace and Communications Cord
Ford Road, Room 24, Bldg 1
Newport Beach, CA 92663 1

Commander
Jefferson Proving Ground
ATTN: STEJP-TD (Dr. Norman Wykoff)
Madison, IN 47250 1

F. Conference Participants without addresses:

Mr. Paul Boggs
ARO, Durham, NC 1

Mr. Clive N. Bowden
RARDE, England

Mr. James Brown
Armor & Engr Board, Fort Knox 1

Mr. Harry J. Davis
Harry Diamond Laboratory

CW3 N. Goddard
MCDEC, Quantico

Mr. Roger I. Lapp
APL, John Hopkins University

Mr. Thomas Lewis
General Dynamics, Pomona 1

Mr. Victor Lindner
P'icatinny Arsenal 1

Mr. William Rodgers
Naval Ordnance, Alexandria, VA 1

Mr. Joe Schmitz
Frankford Arsenal 1

Mr. T. Tsui
AMMRC, Lexington, MA 1

Mr. Leland A. Watermeier
BRL, Aberdeen, MD 1
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